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Preface

Clusters of workstations/PCs connected by off-the-shelf networks have become
popular as platforms for cost-effective parallel computing. Technological ad-
vances in both hardware and software have made such a network-based parallel
computing platform an affordable alternative to commercial supercomputers for
an increasing number of scientific applications.

Continuing in the tradition of the three previously successful workshops,
this fourth Workshop on Communication, Architecture and Applications for
Network-based Parallel Computing (CANPC 2000) brought together researchers
and practitioners working in architecture, system software, applications, and
performance evaluation to discuss state-of-the-art solutions for network-based
parallel computing. This year, the workshop was held in conjunction with the
sixth International Symposium on High-Performance Computer Architecture
(HPCA-6).

As in prior editions, the papers presented here are representative of a spec-
trum of research efforts from groups in academia and industry to further im-
prove cluster computing’s viability, performance, cost-effectiveness, and usabil-
ity. Specifically, we have arranged the contributions in this edition into four
groups: (1) program development and execution support, (2) network router ar-
chitecture, (3) system support for communication abstractions, and (4) network
software and interface architecture.

The first group contains three papers that focus on programming and usabil-
ity of clusters. Unlike tightly-coupled parallel supercomputers, clusters are built
with commodity networking technology and operating systems. As such, clusters
require additional support in the areas of program deployment and transparent
and robust network connectivity. The specific contributions include a remote
execution facility to deploy programs in a cluster in a transparent, secured, and
decentralized manner; and a transparent mechanism to virtualize network con-
nectivity in dynamic cluster environments. This group also includes a paper on
a visual parallel programming tool for the BSP distributed programming model.

The second and third groups of papers improve on crucial aspects of the
cluster technology such as routing (papers on Up*/Down* routing, dynamic
routing reconfiguration, deadlock-free routing), and system support for derived
data types and collective communication. These efforts show how the cluster
concept is influencing research on topics that for years have been associated
with traditional large-scale supercomputers, like interconnect topologies, routing
schemes, parallel libraries.

The fourth group addresses the high software and network interface commu-
nication overheads characteristic of clusters. One paper goes back to the root of
the network computing approach, and performs an in-depth analysis of existing
gigabit architectures (VIA, Gigabit Ethernet). Another evaluates various design
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points for the emerging industry standard for interface architectures, VIA. The
third paper in this section proposes a novel messaging implementation in which
the system learns and predicts patterns of message sequences to reduce the pro-
cessing overhead.

Our excellent program this year was only made possible with the help and
great efforts of many people. First, we would like to thank all of the authors
for submitting papers, the program committee for their timely and meticulous
reviewing and selection of the papers, and the HPCA-6 organizing committee
for their support of this workshop. Special thanks to Henri Bal for giving an
excellent keynote address. Finally, we would like to thank the editorial staff of
Springer-Verlag for agreeing to publish the final version of these proceedings.

April 2000 Babak Falsafi and Mario Lauria
Program Co-chairs
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(Universidad Politécnica de Valencia), Francisco J. Quiles,
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REXEC: A Decentralized, Secure Remote Execution
Environment for Clusters

Brent N. Chun and David E. Culler

University of California at Berkeley
Computer Science Division, Berkeley, CA 94720

Tel: +1 510 642 8299, Fax: +1 510 642 5775
{bnc,culler}@cs.berkeley.edu

http://www.cs.berkeley.edu/˜{bnc,culler}

Abstract. Bringing clusters of computers into the mainstream as general-purpose
computing systems requires that better facilities for transparent remote execution
of parallel and sequential applications be developed. While much research has
been done in this area, most of this work remains inaccessible for clusters built
using contemporary hardware and operating systems. Implementations are either
too old and/or not publicly available, require use of operating systems which are
not supported by modern hardware, or simply do not meet the functional require-
ments demanded by practical use in real world settings. To address these issues,
we designed REXEC, a decentralized, secure remote execution facility. It pro-
vides high availability, scalability, transparent remote execution, dynamic cluster
configuration, decoupled node discovery and selection, a well-defined failure and
cleanup model, parallel and distributed program support, and strong authentica-
tion and encryption. The system is implemented and is currently installed and
in use on a 32-node cluster of 2-way SMPs running the Linux 2.2.5 operating
system.
Keywords: Clusters, Remote execution, Distributed systems, Decentralized
control

1 Introduction

We have designed and implemented a new remote execution environment called
REXEC 1 to address the lack of a sufficient remote execution facility for parallel and se-
quential jobs on clusters of computers. Building on previous work in remote execution
and practical experience with the Berkeley NOW and Millennium clusters, the system
provides decentralized control, transparent remote execution, dynamic cluster member-
ship, decoupled node discovery and selection, a well-defined error and cleanup model,
support for sequential programs as well as parallel and distributed programs, and user
authentication and encryption. It takes advantage of modern systems technologies such
as IP multicast and mature OS support for threads to simplify its design and implemen-
tation. It is implemented almost entirely at user-level with small modifications to the

1 Our REXEC system has no relation to the 4.2 BSD rexec function, nor does it have any relation
to the rexec command used in the Butler [13] system or the rexec function in NEST [1].

B. Falsafi and M. Lauria (Eds.): CANPC 2000, LNCS 1797, pp. 1–14, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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Linux 2.2.5 kernel. The system is currently installed and in use on a 32-node cluster of
2-way SMPs as part of the UC Berkeley Millennium Project.

The rest of this paper is organized as follows. In Section 2, we state our design goals
and assumptions for the REXEC system. In Section 3, we describe the REXEC system
architecture and our implementation on a 32-node cluster of 2-way SMPs running the
Linux operating system. In Section 4, we discuss three examples of how REXEC has
been applied to provide remote execution facilities to applications. In Section 5, we
discuss related work. Section 6 describes future work and in Section 7 we conclude the
paper.

2 Design Goals and Assumptions

In this section, we describe our design goals and the assumptions made in designing
REXEC. Our design goals are based on several years of practical experience as users of
the Berkeley NOW cluster, a thorough examination of previous systems work in remote
execution, and a desire to combine and extend key features in each of the systems into
a single remote execution environment. Our goals are as follows:

– High availability. The system should be highly available and provide graceful
degradation of service in the presence of failures.

– Scalability. As more nodes are added and more applications are run, remote execu-
tion overhead should scale gracefully.

– Transparent remote execution. Execution on remote nodes should be as transparent
as possible.

– Minimal use of static configuration files. The remote execution system should rely
on as few static configuration files as possible.

– Decoupled discovery and selection. The process of discovering which nodes are in
the cluster and what their state is should be separated from the selection of which
nodes to run an application on.

– Well-defined failure and cleanup models. The system should provide well-defined
models for failure and cleanup.

– Parallel and distributed program support. The remote execution environment
should provide a minimal set of hooks that allow parallel and distributed runtime
environments to be built.

– Security. The system should provide user authentication and encryption of all com-
munication.

Our assumptions are typical of remote execution systems and not overly restricting
or extensive. Modern clusters built using off-the-shelf hardware and contemporary op-
erating systems are easily configured to satisfy these assumptions. Our assumptions are
as follows:

– Uniform file pathnames. We assume that all shared files are accessible on all nodes
using the same pathnames and that most local files on each node are also accessible
under the same pathnames (e.g., /bin/ls).
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– Compatible OS and software configurations. We assume all nodes in the cluster run
compatible versions of the operating system and have compatible software config-
urations.

– Common user ID/account database. We assume each user has a unique user ID and
an account which is the same on all the nodes in the cluster.

3 System Architecture

The REXEC system architecture is organized around three types of entities: rexecd,
a daemon which runs on each cluster node; rexec, a client program that users run to
execute jobs using REXEC; and vexecd, a replicated daemon which provides node dis-
covery and selection services (Fig. 1). Users run jobs on the system using the rexec
client. The rexec client performs two functions: (i) selection of nodes based on user
preferences (e.g., lowest CPU load) and (ii) remote execution of the user’s application
on those nodes through direct SSL-encrypted TCP connections to node rexecd dae-
mons. REXEC is implemented and currently installed and running on a 32-node cluster
of 2-way Dell Poweredge 2300 SMPs running a modified version of the Linux 2.2.5
operating system. In this section, we provide details on the key features of REXEC and
show how these features address our design goals.

3.1 Decentralized Control

REXEC uses decentralized control for graceful scaling of system overhead as more
cluster nodes are added and more applications are being run. Upon selecting a set of
remote nodes to run on, the rexec client opens TCP connections to each of the nodes
and executes the remote execution protocol with the rexecd daemons directly. These
direct client to daemon connections allow the work (e.g., forwarding to stdin, stdout,
and stderr, networking and process resources, etc.) of managing the remote execution
to be distributed between the rexec client and the rexecd daemons. With a large number
of nodes, having a centralized entity act as an intermediary between users and cluster
nodes can easily become a bottleneck as single node resources become an issue. Our
scheme avoids this problem by distributing this work.

In addition to scalability, a decentralized design by definition avoids single points
of failure. By freeing users from depending on intermediate entities to access the nodes
they need to run their programs, we ensure that any functional node in the system which
is reachable over the network and running an rexecd daemon can always be used to run
user applications. REXEC can have any number of “front end” machines. This is in
contrast to previous systems such as GLUnix [7] and SCore-D [8], which use a central-
ized entity as the intermediary between clients and the cluster. In GLUnix, for example,
when the master crashes, all 115 nodes of the Berkeley NOW cluster become unavail-
able for running programs through the GLUnix system. In practice, centralized entities
with no backup or failover capabilities can decrease system availability significantly.

3.2 Transparent Remote Execution

REXEC provides transparent remote execution which allows processes running on re-
mote nodes to execute and be controlled as if they were running locally. It uses four
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rexecd rexecd rexecd rexecd

vexecd vexecd

IP  multicas t rexecd
s ta te  annoucements

node1

rexec

node2 node3 node4

3. run indexer on node1

CPU load = 0.6 CPU load = 3.5 CPU load = 1.5

1. lowes t CPU load2. node1,
    node2

    and node2

CPU load = 1.1

rexec -n 2 indexer

    (2 nodes)

Fig. 1. Overall organization of the REXEC remote execution environment. The system is
organized around three types of entities: rexecd, a daemon which runs on each cluster node;
rexec, a client program that users run to execute jobs using REXEC; and vexecd, a replicated
daemon which provides node discovery and selection services. Users run jobs in REXEC using
the rexec client which performs two functions: (i) selection of which nodes to run on based on
user preferences and (ii) remote execution of the user’s application on those nodes through direct
SSL-encrypted TCP connections to the node rexecd daemons. In this example, there are four
nodes in the system: node1, node2, node3, and node4 and two instances of vexecd, each of which
implements a lowest CPU load policy. A user wishes to run a program called indexer on the two
nodes with the lowest CPU load. Contacting a vexecd daemon, rexec obtains the names of the
two machines with the lowest CPU load, node1 and node2. rexec then establishes SSL-encrypted
TCP connections directly to those nodes to run indexer on them.

mechanisms to accomplish this: (i) propagation and recreation of the user’s local en-
vironment on remote nodes, (ii), forwarding of local signals to remote processes, (iii)
forwarding of stdin, stdout, and stderr between the rexec client and remote processes
and (iv) local job control to control remote processes.

The implementation of these mechanisms is centered around a collection of rexec
client and per-rexec-client rexecd threads. Referring to Fig. 2, propagation and recre-
ation of the user’s local environment is done by having the node thread in rexec package
up the user’s local environment and having the rexec thread in rexecd recreate it after
forking and before execing the user’s job. Forwarding of local signals and stdin is done
by having the signals thread and stdin thread in rexec forward signals and stdin to each
of the remote stdin/sig threads in the rexecds, which then deliver them to the user’s ap-
plication using signals and Unix pipes. Forwarding of remote stdout and stderr is done
by having stdout and stderr threads in rexecd read from stdout and stderr Unix pipes
connected to the user’s process and forward that data back to node threads in the rexec
client. Local job control is done by forwarding signals as usual but also by translat-
ing certain signals to ones which have meaning for remote processes not attached to a
terminal. (For example, SIGTSTP (C-z) is translated to SIGSTOP.)
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job 1 job 2

thread
 main

thread
announce

/bin/ls  -l

rexec
thread thread

stdin/s ig
thread
stdout

thread
stderr

thread
heartbeat

fork/exec
Unix pipes

thread
 node

rexecd

SSL/TCP connection

thread thread
 s tdin s ignals

rexec

Fig. 2. Internal thread structure and data flows for rexec and rexecd. rexec consists of a stdin
thread for forwarding of stdin, a signals thread for forwarding of signals, and one node thread per
node for managing remote process execution including propagation of the user’s environment, the
request to start the user’s application, printing remotely forwarded stdout and stderr to the user’s
local terminal, receiving heartbeat packets (and rexec client monitoring of the TCP connection),
and receiving the exit status of the remote process. (In this example, rexec is running ’/bin/ls -l’
on a single node so there is only one node thread.) rexecd consists of a main thread which creates
new threads for new rexec clients and maintains a list of running jobs, an announce thread for
sending multicast state announcements, and a collection of per-rexec-client threads. These per-
rexec-client threads include an rexec thread for the client, the user process forked and execed by
the rexec thread, a stdin/signals thread for forwarding stdin/signals from rexec to the user process,
stdout and stderr threads for forwarding stdout and stderr from the user process to rexec, and a
heartbeat thread for sending of periodic heartbeat packets to detect failures in the SSL-encrypted
TCP connection between rexec and rexecd.
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3.3 Dynamic Cluster Membership

REXEC uses a dynamic cluster membership service to discover nodes as they join and
leave the cluster using a well-known cluster multicast address. In our experience with
large clusters of computers, we have found that over time the set of available nodes tends
to vary as nodes are added, removed, rebooted, and so forth. Using static configuration
files or manual intervention to track cluster membership is error-prone and inefficient. A
dynamic membership service based on multicast avoids this and also has the desirable
property that processes can communicate with interested receivers without explicitly
naming them. Senders who wish to communicate information simply send it on the
multicast address with a unique message type. Interested parties can elect to receive and
interpret information of interest by examining incoming message types. If necessary,
processes can even use the multicast channel to bootstrap point-to-point connections.

Approximate membership of the cluster is maintained by replicated vexecd dae-
mons by using the reception of a multicast rexecd announcement packet as a sign that a
node is available and the non-reception of an announcement over a small multiple of a
periodic announcement interval as a sign that a node is unavailable. Each rexecd sends
announcement packets periodically (once every minute) and also whenever a significant
change in state is observed. Currently, announcements based on state changes are sent
for job arrivals and job departures. vexecd daemons discover and maintain the node
membership in the cluster by caching and timing out node announcement information.

3.4 Decoupled Discovery and Selection

REXEC decouples node discovery from the selection of which nodes an application
should run on. Replicated vexecd daemons are responsible for discovering and main-
taining the node membership of the cluster. Within one state announcement period, a
new vexecd discovers the entire instantaneous membership of the cluster. With multiple
vexecd daemons keeping track of all the nodes, their configuration, and state, a selec-
tion policy is simply a mapping that applies some criteria to that list of available hosts
and returns a set of hosts.

Because users may have different criteria in how they want nodes to be selected for
their applications, discovery and selection are decoupled. The vexecd daemons which
do discovery can implement any number of selection policies. The idea with vexecds
implementing selection services as well is that we envision that most users will probably
choose from a small set of policies in deciding where to run their applications. In a
community composed largely of scientific computing users, for example, lowest CPU
load may be the most common criteria.

vexecds precompute and cache orderings on the list of available nodes so clients can
quickly obtain the results of common selection policies. Under most circumstances,
users will contact prewritten vexecd daemons asking for the n “best” nodes, where
best is defined according to some selection criteria. The vexecds simply return the top
n nodes on their ordered list, which is recomputed each time a state change occurs
with adjustments. vexecds (and end users) are free to implement arbitrarily complex
selection policies.
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Since users will want to use vexecds based on the selection policies the vexecds
implement, the discovery of vexecd daemons and use of their services cannot be com-
pletely transparent. More information is needed from the user either in the form of a
list of suitable vexecd servers or a criteria which is expressed in a way that the system
can automatically discover which vexecd daemons implement that criteria. Currently,
we take the former approach. Users specify a list of suitable vexecd daemons using an
environment variable, VEXEC SVRS.

Discovery of vexecd hosts that implement suitable selection policies can be done
through out-of-band means (e.g., posting on a web page) or it can be done semi-
automatically. We offer both approaches. The former is self-explanatory. The latter
involves using the cluster IP multicast channel to multicast to all vexecd daemons in
the system asking them what selection policy they implement. Each vexecd, upon re-
ceiving a such a request, returns a string that provides a textual description of its policy
which the user can then use to construct a suitable list for setting the VEXEC SVRS
environment variable.

3.5 Error and Cleanup Model

REXEC provides a well-defined error handling and cleanup model for applications.
If an error occurs on the rexec client, in any of the remote processes, or on any of
the TCP connections between the rexec client and any of the remote rexecd daemons,
the entire application exits, all resources are reclaimed, and a textual error message is
printed to the user. A common shortcoming in many previous remote execution systems,
especially those that support parallel execution, is lack of a precise error and cleanup
model and insufficient implementations of remote cleanup. REXEC addresses this by
defining a model, addressing the new failure modes associated with remote execution
and parallel and distributed programs, and providing a robust implementation.

Transparent remote execution of parallel and sequential applications introduces new
two classes of failures. First, failures can occur in the rexec client (the local point of
control) and between the rexec client and the daemons. Since the rexec client logically
represents an applications’ remote process(es), failure of the rexec client is interpreted
as failure of the application and the application is aborted. Second, failures can occur
in individual processes of a parallel or distributed program. Since for all but the most
trivially parallelizable and distributed programs there will be communication between
processes and failure of one process usually means failure of the entire application,
we interpret failure of an individual process in the program as a failure of the entire
application. While these interpretations may not be true for all applications, we feel
they are reasonable assumptions for a large class of programs.

In general, there are many potential error and cleanup models the system could
support. However, only a handful of them make practical sense to real applications.
For example, another useful failure model which we are considering supporting but
currently do not implement is the model where all processes are completely decoupled
and we leave it up to the application to deal with failures. Such a model might be
appropriate, for example, for a parallel application with its own error detection and the
ability to grow and shrink based on resource availability and faults.
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The implementation of the error and cleanup model is done mainly at user-level but
also involves some small kernel modifications. At user-level, the rexec client and rexecd
daemons monitor each other through their TCP connections. Upon detecting an error,
the rexec client exits. Upon detecting an error with some rexec client, rexecd frees all
resources associated with that client and kills all its threads.

To ensure that proper process cleanup is performed on remote nodes, REXEC uses
small modifications to the Linux kernel to track and control a logical set of processes
whose first member is a user process forked by rexecd and other members are descen-
dents of that process. To do this, we added a new system call to specify the first member
of a logical set of processes (all descendents of that process inherit the fact that they are
part of the same set) and a system call to deliver signals to all members of that set,
regardless of changes in Unix process group, intermediate parents exiting causing their
children to be inherited by init, and so forth. When performing cleanup in response to
an error, REXEC simply sends SIGKILL to all processes in the logical set of processes,
which results in all resources for all processes in the set being freed. We also modified
the wait system call to deal with logical sets of processes so a process px blocked on
a wait call waiting for another process py to exit does not return until all processes in
py’s logical process set have exited. This feature is used by the per-rexec-client thread
(Fig. 3.2) so it returns only when all processes forked by the user’s original process (i.e.,
the process which the per-rexec-client thread did a fork/exec on), including itself, have
exited.

An alternative approach to cleanup, one which would have resulted in better porta-
bility of the system, would have been to send SIGKILL to the process group for the
user’s process that was forked by rexecd. An implementation of this approach uses stan-
dard POSIX interfaces. However, there are limitations and consequences. The biggest
limitation is the inability to keep track of process relationships when process groups
change. An example of this is a user process forked by rexecd which then forks a child
and exits. rexecd would keep track of the parent’s process group but since the parent has
exited, the child now becomes inherited by init and becomes a member of an orphaned
process group. Consequently, it becomes impossible to send a signal to the original
process group. The orphaned child will not receive it and thus rexecd has lost track
of a process. User processes could also call setpgrp themselves and a similar problem
results. By keeping tracking process relationships in the kernel using our new system
calls, we ensure that we always are able to kill all processes associated with a user
process forked by rexecd.

3.6 Parallel and Distributed Applications

REXEC supports parallel and distributed applications by allowing users to launch and
control multiple instances of the same program on multiple nodes and by providing a set
of hooks that allow parallel runtime environments to be built. Starting #nodes instances
of the same program is accomplished by adding a -n #nodes switch to the rexec client
program which allows the user to specify a program should be run on #nodes nodes of
the cluster.

The hooks we provide for runtime environments are a fairly minimal set. Each re-
mote process has four environment variables set by REXEC: REXEC GPID,
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REXEC PAR DEGREE, REXEC MY VNN, and REXEC SVRS. REXEC GPID is a
globally unique identifier for a particular execution of a user’s application. It is im-
plemented as a 64-bit concatenation of the 32-bit IP address of the interface the rexec
client uses to communicate with rexecds and the local 32-bit process ID of the rexec
client. REXEC PAR DEGREE is a 32-bit integer which specifies the number of nodes
the application is running on. Within an n node program, REXEC assigns an ordering
on the nodes from 0 to REXEC PAR DEGREE - 1. On each node, REXEC MY VNN
specifies the position of that node in that ordering. Finally, REXEC SVRS contains a
list of REXEC PAR DEGREE hostnames (or IP addresses) for each of the nodes the
user’s application is running on.

3.7 Authentication and Encryption

REXEC provides user authentication and encryption of all communication between
rexec clients and rexecd daemons. More specifically, REXEC uses the SSLeay version
0.9.0b implementation of the Secure Socket Layer (SSL) protocol [6] for authentication
and encryption of all TCP connections between these entities. Each user has a private
key, encrypted with 3DES, and a certificate containing the user’s identity and a public
key that is signed by a well-known certificate authority who verifies user identities. In
our system, we use a single trusted certificate authority for certificate signing and use
user names as identifies in certificates.

Each time a user wants to run an application using REXEC, the user invokes the
rexec client on the command line and types in a passphrase which decrypts the user’s
private key. The system then performs a handshake between the rexec client and rex-
ecd, negotiates a cipher, uses a Diffie-Hellman key exchange to establish a session key,
uses RSA to verify that the user’s certificate was signed by the trusted certificate au-
thority, and checks that the username in the certificate exists and that it matches that of
corresponding local user ID that was propagated from the rexec client. Once the user’s
identity has been established, all communication over the corresponding TCP connec-
tion is encrypted with 3DES using the shared session key.

4 REXEC Applications

In this section, we present three examples of how REXEC has been applied to provide
remote execution facilities to applications. In the first example, we describe how the
REXEC system is used in its basic form to provide remote execution for parallel and
sequential jobs. In the second example, we describe an MPI implementation using a fast
communication layer on Myrinet that uses REXEC as its underlying remote execution
facility. Finally, in the third example, we provide an example of how REXEC has been
extended to provide remote execution on Berkeley’s Millennium cluster which uses
market-based resource management techniques [4].

4.1 Parallel and Sequential Jobs

The rexec client provides the minimal amount of support needed to transparently run
and control parallel and sequential programs on a cluster. Users run the rexec client
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as follows: rexec -n #nodes progname arg1 arg2 .. argn, where #nodes is the number
of nodes the program should be executed on and progname arg1 arg2 .. argn is the
command line the user would type to run program progname with arguments arg1, arg2,
.., argn on a single node. Node selection is done through use of vexecd daemons by
specifying a list of suitable vexecd daemons through the VEXEC SVRS environment
variable. Alternatively, if the user wants to run an application on a specific set of nodes,
the user can set the REXEC SVRS environment variable. A non-null REXEC SVRS
always takes precedence over VEXEC SVRS. Parallel and distributed programs can
be launched using the basic rexec client. It is responsibility of runtime layers or the
application to make use of REXEC’s environment variable support for parallel and
distributed programs to decide how data and computation should be partitioned and
how communication between processes is established.
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Fig. 3. Measured execution time to run a null parallel program with REXEC as a function of
number of nodes. This graph shows the measured execution time of a parallel program that starts
and immediately exits on multiple nodes of the cluster. The measurements illustrate the basic
costs associated with running jobs through the REXEC system. The start-up and cleanup cost for
a running a single node program with REXEC is 158 ms. As the number of nodes increases, total
execution time scales linearly with an average per-node cost of 42.8 ms.

Figure 3 illustrates the basic performance and scalability characteristics of REXEC.
It shows the measured execution time of running a null parallel program that starts and
immediately exits versus the number nodes the program was run on. The measurements
illustrate the basic costs associated with running jobs through the REXEC system. The
start-up and cleanup cost for a running a single node program with REXEC is 158 ms.
As the number of nodes increases, total execution time scales linearly with an average
per-node cost of 42.8 ms. Note that, to date, we have mainly focused on other aspects of
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REXEC’s design as stated in Section 2. We have not aggressively pursued performance
optimizations on the system. Thus, absolute performance numbers as shown still have
considerable room for improvement. The key point here is that the costs are scaling
linearly with the number of nodes. Per-node costs will be optimized in a future version
of REXEC.

4.2 MPI/GM on Myrinet

Using REXEC’s basic hooks for parallel and distributed programs, we modified Myri-
com’s MPI implementation over the GM (MPI/GM) fast communication layer [12] to
use REXEC as its underlying remote execution mechanism. MPI rank and size are
set using the REXEC PAR DEGREE and REXEC MY VNN environment variables.
Communication is set up using REXEC GPID and REXEC SVRS to do an all-to-
all exchange of GM port names using a centralized nameserver. Upon creating a GM
port, each process binds a (key,value) = (REXEC GPID:REXEC MY VNN, GM port
number) pair in the nameserver then does REXEC PAR DEGREE lookups on keys
REXEC GPID:vnn (vnn = 0,1,..,REXEC PAR DEGREE-1). Since each GM network
address is an IP address and a GM port number and each process knows the host-
name (IP address) to VNN mapping from REXEC SVRS, each process thus knows the
GM network address of each process in the program and can then communicate. Using
MPI/GM over REXEC, MPI programs can be started and controlled just like any other
application run through REXEC.

4.3 Computational Economy

As part of the Berkeley Millennium Project, we extended the REXEC remote execution
environment to operate in the context of a market-based resource management system.
In this system, users compete for shared cluster resources in a computational economy
where nodes are sellers of computational resources, user applications are buyers, and
each user sets a willingness to pay for each application based on the personal utility
of running it. By managing resources according to personal value, we hypothesize that
market-based sharing can deliver significantly more value to users than traditional ap-
proaches to resource management. To support a computational economy, we extended
the REXEC system in three ways. First, a new command line switch (-r maxrate) was
added to the rexec client to specify the maximum rate, expressed in credits per minute,
the application is willing to pay for CPU time. Second, rexecd was modified to use an
economic front end (a collection of functions that implement the CPU market) which
performs proportional-share CPU allocation using a stride scheduler [20] and charging
of user accounts for CPU usage. Third, we modified rexecd to include in its announce-
ment packets the current aggregate willingness to pay of all REXEC applications com-
peting for its resources for building selection policies based on the economy.

5 Related Work

Research efforts in remote execution environments for clusters have been going on for
over a decade. Each has succeeded in addressing and to various extents solving different
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subsets of the key problems in remote execution systems. None of these systems, how-
ever, has addressed the range of problems that REXEC does. Built on previous work
and practical experience with a large-scale research cluster, REXEC addresses a wide
range of practical needs while providing useful features which address important issues
such as error handling and cleanup, high availability, and dynamic cluster configuration.
To accomplish its goals, REXEC is implemented at user-level on a commodity operat-
ing system with small modifications to the OS kernel. Such an approach is an example
of one of three distinct implementation strategies: (i) user-level approaches (ii) mod-
ification of existing operating systems, and (iii) completely new distributed operating
systems.

GLUnix [7], SCore-D [8], Sidle [9], Butler [13], HetNOS [3], and Load Sharing
Facility (LSF) [22] are examples of user-level implementations. Compared to REXEC,
each of these systems implements a subset of REXEC’s features. GLUnix and Score-
D, for example, are the only two systems in the list that support parallel programs.
However, both of them also rely on centralized control and manually updated cluster
configuration. Butler and LSF support different forms of replicated discovery and se-
lection. However, neither supports an error and cleanup model as extensive as REXEC
or strong authentication and encryption. One notable feature that has been implemented
in some of these systems which REXEC currently does not support is a programmatic
interface to the system. GLUnix, Butler, HetNOS, and LSF, for example, allow users
to write applications which link with a C library of remote execution related functions.
Using this model, applications such as a shell which automatically decides whether to
execute a job locally or remotely have been developed.

MOSIX [2], NEST [1], COCANET Unix [16], and Solaris MC [10, 17] are exam-
ples of modifying and extending an existing operating system. Again, each of the sys-
tems supports only a subset of REXEC’s features. NEST, for example, supports trans-
parent remote execution but does not support features such as dynamic cluster mem-
bership or parallel and distributed application support. MOSIX, for example, provides
transparent remote execution but does so in a fairly limited context which is mainly
targeted for load balancing amongst a set of desktop machines to exploit idle time. One
notable feature supported by MOSIX which REXEC currently does not support is pro-
cess migration. Mechanisms to implement it, however, are well-known [5, 11, 15, 19]
in both user-level and kernel-level implementations and under various constraints. An-
other notable difference between REXEC and these kernel-level implementations is the
degree of transparency in the remote execution system. Kernel-level implementations
can achieve greater levels of transparency than user-level approaches. Solaris MC, for
example, implements a true single system image with real global PIDs, a global /proc
filesystem, and a global cluster-wide filesystem.

Sprite [14], V [18, 19], and LOCUS [21] are examples of completely new distributed
operating systems which support transparent remote execution. Like the other systems
described, these distributed operating systems also support only a subset of REXEC’s
features. V, for example, supports a publish-based, decentralized state announcement
scheme very much like REXEC. On the hand, V does not support parallel applications,
does not support flexible selection policies, nor does it implement strong authentica-
tion and encryption. Like MOSIX, all three of these systems support process migration
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which REXEC currently does not implement. In addition, like the kernel-level imple-
mentations previously described, these new operating systems also achieve greater lev-
els of transparency due to implementations at the operating system level and, in the case
of Sprite and LOCUS, cluster-wide global filesystems.

6 Future Work

Future work on the REXEC system comes in four areas. First, we intend to add a pro-
grammatic interface to REXEC that exposes REXEC’s functionality to user applications
though a user library. Using this interface, one of the applications we are planning to
build is a shell that understands remote execution through REXEC and, in particular,
makes it easier and more natural for users to use the computational economy. Second,
we intend to add support for transparent remote execution of X applications and secure
tunneling of X traffic over SSL. Techniques for implementing such support are well-
known and already exist in programs such as the secure shell client (ssh). Third, we
plan to pursue performance optimizations of the system to bring per-node costs down.
As the Millennium system scales to hundreds of nodes as planned, optimization of
such costs will become increasingly important for highly parallel applications. Finally,
we intend to work on making REXEC portable across multiple operating systems and
eventually plan on making a public release of the source code so others can use it and
improve on it.

7 Conclusion

To bring clusters of computers into the mainstream as general-purpose computing sys-
tems, better facilities are needed for transparent remote execution of parallel and se-
quential applications. While much research has been done in the area of remote exe-
cution, much of this work remains inaccessible for clusters built using contemporary
hardware and operating systems. To address this, we designed and implemented a new
remote execution environment called REXEC. Building on previous work in remote
execution and practical experience with the Berkeley NOW and Millennium clusters,
it provides decentralized control, transparent remote execution, dynamic cluster con-
figuration, decoupled node discovery and selection, a well-defined failure and cleanup
model, parallel and distributed program support, and strong authentication and encryp-
tion. The system is implemented and is currently installed on a 32-node cluster of 2-way
SMPs running the Linux 2.2.5 operating system. It currently serves as the remote execu-
tion facility for market-based resource management studies as part of the UC Berkeley
Millennium Project.
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Abstract. The idea of network-based parallel computing, using com-
modity components, is not new. However, until recently, the commu-
nication performance of such systems was inadequate for the efficient
parallelisation of most algorithms. With the advent of fast ethernet and
affordable switching technology, this is no longer the case and there is
much work in progress to exploit the potential for cut-price supercom-
puting.
Now that the hardware issues are being resolved there is still a clear
requirement for suitable programming models and software development
tools to make it easy to use this emerging generation of parallel com-
puters effectively. We believe that the BSP programming paradigm is
ideally suited for network parallel computing due its elegance, simplicity
and performance prediction feature. We are developing a visual tool to
facilitate the development of BSP programs in a distributed environment.
In this paper we describe the operation of this tool in a tutorial style,
and we discuss additional features that are planned for the future.

1 Introduction

The structure of this paper is as follows. First we shall review the Bulk Syn-
chronous Parallel (BSP) model of computation and illustrate its cost-prediction
model in the context of NOW (‘network-of-workstations’) parallel computers.
Then we shall run through a tutorial of using the BSP visual development sys-
tem. This is followed by a description of implementation issues. At the moment
this tool consists primarily of a debugger, but we plan to add some extra features,
which are discussed in the final section.

The BSP Computation Model

The BSP computer[7] consists of a number of processor/memory pairs connected
by a communication network. Each processor has fast access to local memory
and uniformly slow access to remote memory.

B. Falsafi and M. Lauria (Eds.): CANPC 2000, LNCS 1797, pp. 15–29, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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The BSP programming model is a prominent example of the use of remote
memory transfer. This is an alternative to message passing, in a distributed
memory environment. Each process can directly write and read to the memory
of a remote process. These actions are one-sided with no action by the remote
process and hence there is no potential for deadlock.

Execution of a BSP program proceeds in supersteps separated by global syn-
chronisations. A superstep consists of each process doing some calculation, using
local data, and/or communicating some data by direct memory transfer. The
global synchronisation event guarantees that all communication has completed
before the commencement of the next superstep.

BSP programs are SPMD, which stands for single program multiple data.
Each processor runs an identical program, but the programmer has access to
the current process id (which is in the range 0 to nprocs − 1, where nprocs is
the total number of processes) to allow different behaviour to be implemented
at each node if required.

The main BSP commands are as follows:

bsp begin, bsp end define start and end of SPMD code
bsp pid get local process id
bsp nprocs get total number of threads
bsp sync perform barrier synchronisation
bsp push reg make a data structure globally visible
bsp pop reg remove the global visibility of a data structure
bsp put, bsp get transfer data to/from other processes. If the high-perform-

ance option is selected this may take place at any time during superstep so
one must not change/use the data until after the next global synchronisation.

Let us consider a C program for the numerical solution to Laplace’s equa-
tion over a rectangular domain, with fixed values on the boundary, using the
technique of Jacobi iteration[2]. The sequential code for a single iteration is as
follows:

for (row = 1; row < HEIGHT - 1; row++) {

for (col = 1; col < WIDTH - 1; col++) {

unew[row][col] =

0.25*(u[row - 1][col] + u[row + 1][col] +

u[row][col - 1] + u[row][col + 1]);

}

}

We could parallelise this using BSP by arranging the grid into overlapping
strips, each to be worked on by a separate process.
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Strip 3

Strip 0

Strip 1

Strip 2

Each iteration involves a computation phase, then a communication phase, and
finally a global synchronisation. Each process updates its internal nodes and
then transmits ‘halo’ data to its neighbours.

for (row = 1; row < STRIPS - 1; row++) {

for (col = 1; col < WIDTH - 1; col++) {

unew[row][col] =

0.25*(u[row - 1][col] + u[row + 1][col] +

u[row][col - 1] + u[row][col + 1]);

}

}

pid = bsp_pid();

if (pid != NPROCS - 1) { /*update next strip*/

bsp_put(pid + 1, unew[STRIPS-2],

unew[0], 0, 4 * WIDTH);

}

if (pid != 0) { /*update previous strip*/

bsp_put(pid - 1, unew[1],

unew[STRIPS-1], 0, 4 * WIDTH);

}

bsp_sync();

BSP Cost Modelling

Perhaps the most important feature of BSP is its cost-prediction model, which
makes it relatively easy to evaluate the potential efficiency of an algorithm prior
to implementation. In this model the parallel computer is reduced to four con-
stants (s, p, l, g) where
s = processor speed (Mflops)
p = number of processors

l =
latency/synchronisation time
time for 1 floating point op
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g =
time to get/send 1 fp. value

time to do 1 floating point op.
The cost of a single superstep is then

no + ncg + l

where
no = max number of f.p. operations performed by any process
nc = max number of real values communicated by any process
and the predicted execution time is given by

s−1(no + ncg + l)

The BSP cost of the whole task is just the sum of the individual supersteps.
In the case of the above Jacobi iteration example we evaluate the BSP cost

function as follows. Let us assume that the grid has dimension I in each direction.

Then the amount of data points to be updated by each processor is
I2

p
. Each

update requires four arithmetic operations so we have:

no =
4I2

p

The most communication that any processor has to do is to output two complete
rows of data to its neighbours (and simultaneously to input two new rows from
the same parties). So we have:

nc = 2I

This leads to an overall cost function, for a single iteration, of

4I2

p
+ 2Ig + l

Note that we could reduce the cost by partitioning the data grid into squares
rather than strips. In that case the cost would be

4I2

p
+

4Ig√
p

+ l

Using the Oxford implementation of BSP[5], parameters (s, p, l, g) have been
measured for a wide variety of architectures. These may be used to predict
the likely performance of a BSP algorithm prior to execution (or even program
construction). Certain algorithms can be immediately consigned to the waste-
bin, perhaps avoiding months of futile effort.

Here are some examples of BSP parameters for some particular architectures,
based on the Oxford BSPlib benchmarks[12].
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Machine s p l g

Origin 2000 101 4 1789 10.24
32 39057 66.7

Cray T3E 46.7 4 357 1.77
16 751 1.66

Pentium NOW 61 4 139981 1128.5
10Mbit shared ether 8 539139 1994.1

Pentium II NOW 88 4 11757 31.5
100Mbit switched ether 8 18347 30.9

The latter two rows of this table show that the advent of fast-ethernet and
switching technology has led to a huge reduction in the l and g communication
parameters for a PC cluster. In particular, for an 8-processor system the g pa-
rameter, which represents the cost of entering data into the network, is improved
by a factor of around 70. There are two reasons for this. Firstly fast ethernet has
ten times the bandwidth of standard ethernet. Secondly using a switch allows
each processor to have a dedicated cable, virtually eliminating collisions. There
is further potential for reducing the g parameter by using multiple ethernet con-
nections per processor node. The BSP parameters for such machines are now
in the league of purpose-built supercomputers, but they cost far less to build.
Network-based parallel computing has finally come of age!

To emphasise this point, let us now compare the likely performance of the
Jacobi iteration program running on an ‘old-style’ NOW with its performance
on a state-of-the art machine.

Consider running the program on a 1000×1000 data grid. On an 8-processor
Pentium NOW, connected by a 10 Mbit shared ethernet, the predicted running
time for a single iteration would be

1
61

(
4 × 10002

8
+ 2000 × 1994.1 + 539139

)
× 10−6s

= 0.082s

which is longer than the predicted single processor execution time of

1
61

(
4 × 10002

) × 10−6s = 0.066s

In fact the application under consideration is an example of a program that
parallelises particularly well. For many algorithms the story would be even worse.
So the BSP cost-prediction model gives us a clear indication as to why network-
based parallel computing has been slow to take off.

Now consider running the same parallel code on an 8-processor Pentium-II
NOW connected by 100 Mbit switched ethernet. The predicted running time is
0.0066s compared with the predicted single-processor time of 0.045s, giving a
speedup factor of 6.8 and a parallel efficiency of 85%.
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2 The BSP Development System

Parallel programming is a tricky business. Pathological problems such as dead-
lock, livelock, and race conditions are the bane of its practitioners[6]. The sim-
plicity of the BSP model has been a major step towards making parallel pro-
gramming more accessible. But in order for BSP to succeed in gaining worldwide
prominence there is a requirement for a supporting suite of professional software
development tools. We are in the process of developing such tools. The main
component in place is a visual debugger. Further work is planned to incorporate
facilities for parallel performance profiling[3,4], visualisation, and computational
steering.

Now let us illustrate the operation of the BSP debugger by considering its
application to the parallel program described in section 2. When the program
is executed in ‘debug mode’ a graphical console appears and the program halts
at the call to bsp begin, which marks the start of its parallel region. A process
display window is created to depict the processes that have been spawned and
their subsequent communication actions. A window onto the source code is also
provided, showing the current point of execution that has been reached.

Henceforth the BSP superstep is taken as the quantum of computation and,
using the console buttons, it is possible to advance the computation one step at
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a time, and to examine the source, destination and content of all communication
events that take place.

After superstep one the program is yet to perform any communication; reg-
istration of data has just taken place (using calls to bsp push reg).

After superstep two we see, from the communication display, that data have
been transmitted between adjacent processes in the manner that we would ex-
pect.
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It is now possible to examine the content of individual communication events.
At this early stage in the computation the actual data being transmitted are not
particularly interesting, all being zero. It will require a number of iterations for
non-zero values to propagate from the boundaries.

Satisfied that all is in order, we may click the console’s ‘run’ button to allow
the program to proceed without interruption. However we are free to intercept
it at any later stage using the ‘pause’ button.

The development tool has been used to program a number of sophisticated
parallel applications[10], such as parallel sorting using regular sampling[8] and
Gaussian elimination using partial pivoting[9]. We believe it has saved an im-
mense amount of development time. Note that, for fine-grained debugging, a
facility is provided to attach a serial debugger to any thread, and interact with
it remotely through the console.

3 How the BSP Debugger Works

The BSP debugger consists of a high-level debug library of BSP commands to-
gether with a graphical user interface programmed in java[1]. Around six thou-
sand lines of source code have been written so far.
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The Debug Library

The debug library was designed to be as easy to use as possible. Thus the user is
only required to include the BSPlib debugging header db bsp.h (see Figure 1)
instead of the standard BSPlib header bsp.h, and to link with the library file
libdb bsp.a.

The debugger header file (see figure 1) redefines all the BSP functions (using
C preprocessor macros) so that they are replaced with debugging functions in-
stead (e.g. any instances of bsp sync are redefined to db bsp sync etc.). Note
that some of the debugging functions have additional arguments, for specifying
the actual names of variables and the file and line number of source code from
which the function is called. The values for these variables may be automatically
generated using standard C macros (#, FILE , and LINE ). This enables the
BSP debugger to locate the source code from which all BSP calls are made and
to display the names of variables that are registered and communicated.

In order to know the name of the running program (required for attaching
gdb and other sequential debuggers to individual processes) the main function
is redefined to program main, and a new main function is defined in the debug
library. The latter takes a copy of the program arguments (including the name
of the executable) before passing them unchanged to the debugged program’s
main function.

/* db_bsp.h - Include this file instead of bsp.h to use the BSP debugger */

/* We have to redefine main so that we can use our own function and thus get */
/* the name of the running program */

#define main(a, b) program_main(a, b)
/* We use #a to pass the name of variable a */
#define bsp_push_reg(a,b) db_bsp_push_reg(a,b,#a)
#define bsp_pop_reg(a) db_bsp_pop_reg(a)
#define bsp_put(a,b,c,d,e) db_bsp_put(a,b,c,d,e, #b, #c, NORMAL, __FILE__, __LINE__ )

#define bsp_get(a,b,c,d,e) db_bsp_get(a,b,c,d,e, #b, #d, NORMAL, __FILE__, __LINE__ )
#define bsp_bcast(a,b,c,d) db_bsp_bcast(a,b,c,d, #b, #c, __FILE__, __LINE__ )
#define bsp_hpput(a,b,c,d,e) db_bsp_put(a,b,c,d,e, #b, #c, HIGH, __FILE__, __LINE__ )
#define bsp_hpget(a,b,c,d,e) db_bsp_get(a,b,c,d,e, #b, #d, HIGH, __FILE__, __LINE__ )
#define bsp_sync() db_bsp_sync( __FILE__, __LINE__ )

#define bsp_begin(a) db_bsp_begin(a, __FILE__, __LINE__ )
#define bsp_end() db_bsp_end( __FILE__, __LINE__ )
#define bsp_pid() db_bsp_pid()
#define bsp_nprocs() db_bsp_nprocs()

#define bsp_init db_bsp_init
#define bsp_abort db_bsp_abort

#endif

Fig. 1. The debug library header file

Providing a full picture of the communications taking place during the run-
ning of any BSP program requires that a considerable amount of information
be obtained, updated, and sent to the graphical interface on demand. The con-
straints of a debugging library mean that this data can only be managed and
exported upon calling the library functions. So each debug BSP function has to
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perform various additional tasks, as well as executing the corresponding BSP
command. A hidden layer of communication has been added to allow each pro-
cess in a program to be controlled and interrogated while retaining its original
semantics. This is done using only the original BSP inter-process communication
functions[10].

The BSP library guarantees only that process number zero has use of a
machine’s I/O capability. Thus it is that process only which is linked to the java
graphical interface. This means that if data is required from the other processes
then there must be some form of internal communication (using BSP) in order
to pipe the data into process zero and then out to the graphical interface. This
also works in reverse with queries and commands from the graphical interface
arriving at process zero before being distributed to the other processes.

When a program compiled with the debugging library enters a barrier syn-
chronisation, it is temporarily halted (unless the console’s ‘run’ button has been
pressed), and the user is able to send requests for further information about the
program. This capability, and that of returning the requested information from
all processes is achieved by implementing a ‘false barrier’ which allows infor-
mation to pass from the graphical interface through process zero to the other
processes. In order to do this, the debugging library registers a variable called
barrier command at the beginning of the program (in db bsp begin).

When db bsp sync is called, all the processes enter a loop in which process
zero awaits commands from the graphical interface, before copying them into
barrier command on all the other processes. All processes then synchronise and
carry out the appropriate command (for example ‘QUERY TRANSFERS’), synchro-
nise and then await the next command (e.g. ‘SEND SOURCE’). On receipt of the
command ‘END BSP SYNC’ (the user having pressed the ‘step’ or ‘run’ button on
the graphical interface) all processes exit their loop and the main BSP program
continues to run.

0

1

2

3

Graphical Interface

QUERY_TRANSFERS SEND_SOURCE END_BSP_SYNC
db_bsp_sync

All DRMA
and messages

for BSP program
passed

End of debug superstep

The Graphical Interface

The java GUI component interacts with BSP process number zero using TCP/IP
sockets. At the outset of the project it was decided that the implementation pro-
vided should be as portable as possible and should run on every platform which
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is supported by the current version of BSPlib. However, graphical interfaces tend
to be highly specific to particular platforms. The graphical part of the debug-
ger was expected to be fairly complex visually but not to require a particularly
large amount of processing power. Therefore it was decided that java would suit
the requirements very well (being extensively portable, with built-in network-
ing capabilities, easy to use to implement graphical interfaces, and sufficiently
powerful for the task required[1]).

Several possible methods were considered before it was decided that the best
way of communicating between the C library and the java graphical interface was
through the use of TCP-IP data-stream sockets[1]. Socket communications are
simple to implement in java, and there are a set of standard C socket libraries
available across all major UNIX platforms. Moreover, employing sockets also
allows the user to run the debugger on a machine separate from the BSP code if
so desired (useful, as not all parallel machines come with a java virtual machine,
and high-performance programs do not benefit from having the added overhead
of a java virtual machine running on one of their processors).

Although the basic data-types in java are represented in the same way on ev-
ery machine (one of the benefits of the language), the way that different machines
(and compilers) store C data-types can vary substantially. So as to maintain the
portability of the debug library, the code for communicating with the java in-
terface has been kept separate. There are several functions defined to convert
C types to a format which java can readily read. Messages passed consist of a
32 bit integer indicating the type of the message, followed by a variable length
buffer containing the main body of the communication.

Displaying the Communication Topology. Providing a graphical represen-
tation of the communications between processes required us to implement an ap-
propriate graph-drawing algorithm. The method chosen is a physical simulation
of a number of balls (the processors) connected by springs (the communications
links between processors). The balls are placed at an initial starting position
and then the simulation allowed to run. Once the root mean square velocity of
the balls has fallen below a certain threshold the simulation is stopped and the
physical arrangement drawn to the screen. The algorithm is designed to use the
positions of balls at the end of one superstep as the start position of the simula-
tion for the next. This is so that processors change position as little as possible,
making the evolution of communications over time easier to see.

Displaying Transfer Data. The approach taken for displaying transfer data
is to extract it from the system only on demand. If, for example, the user of the
debugger wishes to display the contents of a message that has been written to
process five, then process zero is instructed, via the TCP-IP socket, to obtain
that information. Process zero, in turn, issues a request to process five to supply
the data. A global synchronisation is then applied. Next process five sends back
the requested data and another synchronisation is applied. Finally process zero
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returns the data to the user interface along the socket. This internal protocol is
enclosed within the db bsp sync command, as described above.

An alternative approach would be to attempt to buffer all data that are
communicated during each superstep for perousal at the user interface. However
this would not be at all scalable, easily leading to memory overflows.

Handling Type Information. Unlike most contemporary parallel program-
ming libraries, the inter-process communication in the BSP library is untyped
– communications are treated purely as transfers of sequences of bytes and the
actual data type is unknown. However, for debugging purposes, it is useful to
know the types of all variables that are communicated, so as to be able to inspect
and display their values and also to check for type mismatches. Unfortunately
there is no standard C macro available for this purpose so we have implemented
a preprocessor which scans the source code of the BSP program and builds a
database of the types of the variables used in each BSP function call. These are
written out to a database which is subsequently used by the java graphical user
interface component to display data correctly.

Automatic Error Checking

Debuggers tend to have facilities built-in for the automatic detection of common
errors and potential errors. The BSP debugger is capable of detecting a number
of commonly-occurring, pathological errors, principally:

– Registration errors, where not all processors register a particular variable.
The debug version of bsp push reg is supplied with the actual name of the
variable being registered as an argument (see figure 1). Hence it is simple to
detect such errors at the point of cross-correlating addresses for use in data
transfers.

– Out of bounds communication errors, where a communication operation at-
tempts to write to an area of memory that has not been registered.
This check is currently supported by the underlying BSP library[5] and so
we have not implemented it as part of the debugger, although to do so would
be straightforward.

– Synchronisation errors, where code is compiled with the assumption that
processors will synchronise at the same place in the code, and yet they do
not.
The debug version of bsp sync is supplied with the location in source code
from which it is called as an argument. Hence the current source-code loca-
tions of all the processes may easily be cross-correlated between supersteps.

– High performance transfer errors, where an area of memory is changed after
it has been given as the source to a high-performance bsp put or bsp get
and before a bsp sync.
The debugger can be set to catch such errors by comparing the data stored at
both the source and destination addresses of each high-performance transfer
event after the processors have synchronised. If they are different then this
is likely to indicate an error.
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– Type errors, where the source and destination address of a communication
operation do not hold the same type of data.
When the user calls either the bsp put or bsp get function, it is almost
certain that the source and destination variables should be of the same type
as they are both used to contain the same information. Thus in most cases
if data is transferred between two memory locations of different type it is
because of an error in the program being executed. As the debugger has
access to the type of each variable used for data transfer, it is able to detect
type inconsistencies at the end of each superstep.

– Overwrite errors, where a location on a particular process is written by more
than one process in a superstep.
The debug versions of the communication routines keep track of the source,
destination, and size of all data transfers during each superstep. Upon en-
tering db bsp sync, all this information is communicated to process zero,
where it may be correlated and overwrite errors be detected.

4 Conclusions and Areas for Future Development

Commodity supercomputing is now a reality. The promise of scalable price/perf-
ormance ratios will surely be very appealing. However existing serial programs
(or even shared-memory parallel programs) will have to be laboriously paral-
lelised if they are to use NOWs effectively. We believe that the parallelisation ef-
fort will usually be simplified using BSP, rather than the industry standard MPI
library1[11]. BSP has no deadlocks to worry about. It has far fewer commands
than MPI, and its cost/prediction model is a vital aid towards achieving good
parallel speedup. We have developed a visual debugger to assist with conver-
sion to BSP and have demonstrated its effectiveness in increasing productivity.
Further facilities are planned as follows:

Profiling: The ability to analyse parallel efficiency and highlight troublesome
areas of load imbalance at run-time,
An excellent visual profiling tool for BSP programs is already in existence
[3,4]. It is used to analyse imbalance in either computation or communication
in the execution of BSP programs, and specific problematic areas of code can
be pinpointed. It can also derive a BSP cost expression for an existing BSP
program, which may then be used to predict its likely performance on other
systems.
It is our intention to combine these features with the BSP debugger in due
course. We envisage that an additional display window would be offered to
show a histogram representing the costs of computation, communication and
synchronisation in all supersteps to have occurred so far. An accumulated
BSP cost function could also be displayed.

1 But note that BSP functionality is included as a subset of MPI version 2.
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Visualisation: The ability to visualise data from a parallel computation in
progress, and also to allow the programmer to create graphical user interfaces
to the application,
The standard java libraries incorporate portable software for visualisation
and manipulation of two and three dimensional geometric objects, and also
for building graphical user interfaces. Hence an obvious extension to our BSP
programming enviroment would be to provide direct and easy access to these
facilities from within BSP parallel programs. This could then be used as the
basis for developing parallel BSP graphical algorithms to perform tasks such
as ray tracing or construction of iso-surfaces within data fields.

Computational Steering: The ability to modify future behaviour of a pro-
gram in response to data visualisation.
There is much interest at present in constructing virtual laboratories, whereby
complex mathematical simulations in progress are visualised and interacted
with. It has been found that huge amounts of computer time and money may
be saved using this simple technique. It would be straightforward to modify
the BSP debugger to accept commands to change the values of parameters
at superstep boundaries controlled by widgets from the user interface. We
have two current projects in progress in the Oxford Supercomputing Centre
of this nature. One is related to techniques for extracting oil from porous
rocks, the other is concerned with molecular dynamics simulations.

At present our BSP development system works only with C programs. In due
course we would like to provide support for other languages, such as FORTRAN.
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Abstract. This paper presents the design, implementation, and perfor-
mance of a transparent network connectivity layer for dynamic cluster
environments. Our design uses the techniques of API interception and
virtualization to construct a transparent layer in user space; use of the
layer requires no modification either to the application or the underlying
operating system and messaging layers. Our layer enables the migration
of application components without breaking network connections, and
additionally permits adaptation to the characteristics of the underlying
networking substrate. Experiments with supporting a persistent socket
interface in two environments—an Ethernet LAN on top of TCP/IP, and
a Myrinet LAN on top of Fast Messages—show that our approach in-
curs minimal overheads and can effectively select the best substrate for
implementing application communication requirements.

1 Introduction

With improvements in microprocessor and networking performance, cluster en-
vironments have become an increasingly cost-effective option for general parallel
and distributed computing. Despite demonstrations of effectiveness in controlled
situations (e.g., a dedicated cluster of workstations employed for scientific com-
putations), wider-scale use of cluster environments for general applications has
been hampered by the need to handle two characteristics of such environments:
heterogeneous resource capabilities and dynamic availability. The former is a
consequence of both the incremental construction of cluster installations over
an extended time period and the emerging trend towards integrating mobile
resource-constrained devices in such environments. The latter characteristic pri-
marily arises due to the fact that cluster environments are not dedicated to a
single application to permit optimal use of shared resources.

The traditional method of addressing these characteristics relies on being able
to migrate application components among the cluster resources and efficiently
adapting to the underlying resource capabilities. Such migration capability effec-
tively supports the distribution of computational load among nodes in a cluster,
the dynamic addition and removal of computing nodes to a running application,
and the migratability of applications between fixed and mobile devices. However,
to fully realize these benefits, the migration must be supported as transparent
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to the application as possible. In particular, network connectivity must be main-
tained, both within application components and between the application and
the outside world. Unfortunately, maintaining connectivity is complicated by
the fact that (1) sending and receiving network messages changes the state of
operating system (OS) buffers, and (2) an application typically internalizes sev-
eral operating system handles (such as socket identifiers and IP addresses), which
stop being relevant upon migration.

Existing approaches deal with the above problems either by relying on ex-
tensive modifications to OS structures to support migration [6,12,13,10], or by
requiring the use of a new application programming interface (API) [2,4,3,7]
whose implementation isolates the application from the consequences of migra-
tion. Neither of these choices is ideal because they cannot be applied to existing
OSes and applications. Moreover, most such solutions do not address the is-
sue of adapting to changes in resource characteristics (e.g., the availability of
networking substrates with different capabilities).

In this paper we present the design, implementation, and performance of a
network connectivity layer that addresses the above shortcomings. Our layer op-
erates transparently between the application and the underlying communication
layer or operating system (our specific context is Win32 applications running on
top of Windows NT). This layer interfaces with the application and the oper-
ating system using API interception techniques [1,8], which permits calls made
to system APIs to be diverted to a set of routines provided by our layer. This
facility permits our layer to maintain network connectivity across application
component migrations without requiring modification to either the applications
that sit on top, or the communication layers and operating systems that sit
below. In particular, this network connectivity layer manages the mapping be-
tween physical and virtual handles and the uninterrupted transfer of required
state whenever a component is migrated.

Moreover, using the same techniques, this layer can also support the dynamic
adaptation of the application to changing underlying resource characteristics. For
instance, upon detecting that the network connection after migration is slow, the
layer can transparently introduce compression and decompression steps at the
two ends of the connection, thereby trading off additional processing for network
bandwidth. Thus, this layer provides a natural place for incorporating several
policies for customizing application use of underlying resources.

To assess the complexity and performance overheads of the network con-
nectivity layer, we describe its implementation in the concrete context of two
environments—an Ethernet LAN on top of TCP/IP, and a Myrinet LAN on top
of Fast Messages [11,9]. Our results show that the layer incurs minimal over-
heads and can effectively select the best substrate for implementing application
communication requirements.

The rest of this paper is organized as follows. Section 2 presents relevant back-
ground and related approaches for maintaining network connectivity. Section 3
presents the design and implementation details of our transparent communica-
tion layer. The performance overheads of the layer are analyzed in Section 4.
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Section 5 briefly describes the packaging of the network connectivity function-
ality as a stand-alone software module. Section 6 discusses the applicability of
our approach to other related problems and we conclude in Section 7.

2 Background

The context for this research is applications written to the Win32 and WinSock
interfaces running on top of the Windows NT operating system. Our goal is
to provide transparent network connectivity across migration of such applica-
tions, and constitutes one component of a larger research project called Com-
puting Communities (CC) [5]. CC articulates a novel method of middleware
development, which does not suffer from the excruciating problem of having to
redesign, recode, or even recompile the applications. The binaries of all exist-
ing applications can run on a new, distributed platform without modification.
This distributed platform realizes a “computing community”, in which all of
the physical resources such as CPU, display, file system, network are virtualized
and provide the application with a view of running on a virtual multiprocessor
system.

2.1 Related Work

Previous approaches for maintaining network connectivity fall into two broad
categories: modifications to the OS network protocol stack, and introduction of
a new API for accessing underlying resources.

Modifying the OS network layer. Several researchers [13,12,6] have success-
fully demonstrated transparent network connectivity by across process migra-
tions by incorporating changes to kernel data structures and protocols. For in-
stance [13,12], the implementation of network migration on top of the Chorus
operating system modifies the network manager so that a migrating process’
ports are marked as migrating. Messages sent to the port of a migrating pro-
cess results in the requesting node being informed of the migration, causing
the request to be reissued. While such solutions provide required functionality,
their reliance on kernel modifications restricts their applicability in the case of
commodity OSes.

Modifying the API interface. An alternative approach isolates the applica-
tion from changes in its mapping to underlying resources. Typically, this requires
modifying application abstractions using new APIs. For instance, the applica-
tion can use only connectionless protocols (using global target identifiers that
are guaranteed to remain unchanged across migrations) or fault-tolerant group
communication primitives [3,7]. Some other systems rely on appropriate run-time
support to construct a global name space for all structures [2,4] where the appli-
cation remains unaware that its mapping to underlying physical resources has
changed. The primary handicap of such approaches is their limited applicability
to commodity applications that are written using standard APIs.
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2.2 API Interception

Our approach addresses the above shortcomings by maintaining network connec-
tivity using a user-level middleware layer that is transparently inserted between
the application and the underlying OS; neither the application nor the OS needs
to be modified. In fact, the application does not even need to be recompiled or
relinked.

Our middleware layer is inserted using a recently developed technique [1,8]
called API interception. This technique relies on a run-time rewrite of portions
of the memory image of the application (either the import table for functions
in dynamically-linked libraries (DLLs) or the headers of arbitrary functions) to
redirect API requests originating from the application to appropriate functions in
the middleware layer. This paper describes how this basic mechanism augmented
with support for handle translation, buffering, and flow control can be used to
provide network connectivity across migration of application components. An ad-
ditional advantage of our approach is that it can adapt transparently to changes
in the underlying network configuration. For example, given a situation where
the application components have a choice of multiple networking substrates to
communicate over (e.g., both Ethernet and Myrinet), the middleware layer can
automatically redirect application interactions to the network (and accompany-
ing underlying messaging layer) that delivers the higher performance. Note that
this switch between networks and messaging layers is accomplished completely
transparent to the application.

3 Persistent Network Connections: Design

To make a network connection transparently migratable and capable of adapting
itself to underlying resource characteristics, the communication layer virtualizes
the physical socket connection. Virtualization, achieved using API interception,
comprises of two parts: (1) association of a global identity (GID) with the con-
nection independent of the physical location of the end-point processes, and (2)
rerouting of application requests that use the socket to appropriate handler rou-
tines, which complete the requests using available physical resources. Figure 1
shows these two virtualization components.

The GID-to-physical socket translation and the handlers of redirected re-
quests together constitute the agent activity of the layer. The agent creates
virtual sockets by allocating appropriate physical resources and associates a
GID with it. Application requests use this GID and are handled by realizing
them using semantics-preserving operations on the underlying physical network
resources. The GID persists across migrations of application components: the
agent allocates physical resources on the new location and reassociates the GID
with them. Agents on the two nodes involved in the migration coordinate with
each other to ensure that application components remain unaware of the migra-
tion. In addition to performing GID translations and physical data transfer, the
agent handles flow control and management of resources at the two ends of the
connection.
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Fig. 1. Virtualizing the socket layer using API interception.

This section describes two implementations of this design. The two imple-
mentations, referred to as the thick agent and thin agent implementations in the
rest of the paper, differ in how the agent activity is integrated with the applica-
tion and represent different tradeoffs between extensibility and performance. In
the thick agent implementation, described in Section 3.1, the agent is realized
as a separate process that interacts with the application components using a
pair of FIFO buffers. In the thin agent implementation, described in Section 3.2,
a subset of the agent functionality that is on the critical path is injected into
the application itself (again using API interception). The rest of the agent func-
tionality remains in a separate process that is only used to coordinate actions
at startup and upon migration and interacts with the application components
using a shared buffer.

In both cases, we assume that the actual migration of the application compo-
nents themselves is accomplished through orthogonal mechanisms not discussed
here. These mechanisms can be simple such as restarting an application compo-
nent on a new node with different parameters (a common strategy for stateless
servers), or more elaborate involving process checkpoint and restart.

3.1 Thick Agent Implementation

The thick agent implementation is illustrated in Figure 2. The basic idea is that
each end of a socket connection (in general, any interprocess communication
(IPC) mechanism) can be abstracted in terms of a pair of FIFO buffers between
the application component and the agent process. The IPC mechanisms inject
data into and extract data from these buffers; physical data transfer is real-
ized by the agent processes. The agent processes are also responsible for buffer
management and maintaining data stream continuity upon migration.

Buffer Management. The FIFO buffers between the application component and
the agent processes are of fixed size. The agent processes remove messages from
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Fig. 2. Overall structure of the thick agent implementation.

the application out-buffer and inject them into the network, and extract mes-
sages from the network and insert them into the application in-buffer. To handle
situations where the application is not responsive in consuming messages in the
in-buffer, the agent processes divert received messages into dynamically allocated
overflow buffers prior to transferring them to the in-buffer.

Data Stream Continuity. To maintain data stream continuity across migrations,
both the data stored in the FIFO buffers on the original site as well as any mes-
sages in transit must be flushed to the new site. The agent processes coordinate
to achieve this using the following eight steps (Figure 3) shows these steps for the
migration of a connection end-point from node B to node C; the other end-point
stays fixed on node A):
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5.Endmark
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AppB

Agent B

AppA

Agent C
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Fig. 3. Migration protocol in the thick agent implementation.
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1. Upon realizing that it has migrated, the application component sends a
Request-Migration message with the connection GID as a parameter to
the local agent (on node C).

2. The agent on node C forwards the message to the agent at the old site (node
B).

3. Upon receiving the Request-Migration message, the agent on node B
flushes its out-buffer to the other end of the connection (node A) and sends an
End-Mark message. It then waits for Step 5, extracting in-transit messages
into its in-buffer.

4. When the agent on node A receives the End-Mark message, it freezes the
out-buffer for the connection.

5. The agent on node A then injects an End-Mark message into the network.
6. Receipt of this End-Mark message on node B implies that no more data

will be sent from node A on this connection. The agent then forwards all of
the messages in its in-buffer to node C.1

7. When the agent on node C receives all of these messages, it recreates its data
structures and sends out a Request-Reconnect message to the agent on
node A.

8. Upon receiving the Request-Reconnect message, the agent on node A
reactivates the send buffer for the connection, and sends back an ack message
to node C.
The primary advantage of the thick agent implementation is its extensibility.

Support for new IPC mechanisms can be easily incorporated with minimal code
modifications to capture its semantics. Another advantage is the complete decou-
pling between application-agent and agent-agent interactions. This decoupling
permits the agents to appropriately adapt to the underlying communication sub-
strate without affecting the rest of the implementation in any way. For instance,
the agents can use a faster networking layer/substrate (e.g., FastMessages on
Myrinet) when available, or introduce codecs to minimize bandwidth require-
ments on a wireless connection.

The primary disadvantage of this implementation is its performance penalty.
Each data transmission between data components will introduce two extra con-
text switches between the application and agent processes and two extra data
copies. To improve on this, in the thin agent implementation described next,
we move the agent data transfer functionality into the application itself. This
reduces the overhead to a single data copy on the send side.

3.2 Thin Agent Implementation

The basic idea of the thin agent implementation, illustrated in Figure 4, is to
move the critical part of the agent functionality into the application component
itself. Note that the application binary remains unmodified; this functionality
is injected at load-time using the API interception technique described earlier.
1 The message forwarding actually proceeds concurrently with steps 4 and 5, but is

stated this way for clarity.
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The injected functionality permits applications to communicate with each other
directly, maintain necessary state of data connections, and adapt themselves to
underlying resources. Application components detect migration by detecting that
the existing connection has broken. To re-establish a connection, they rely on
GID tables of active local connections maintained in the separate agent process
at each site. Agents coordinate upon migration to determine the two connection
end-points; application components reconnect to these points by replaying the
original (logged) API request.
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Fig. 4. Overall structure of the thin agent implementation.

Buffer Management. Each end of the connection, besides storing necessary state
information, also maintains a send-side buffer. This buffer stores copies of mes-
sages that have been transmitted but not yet acknowledged. Send-side buffering
suffices because data is directly routed into application buffers on the receive
side. Management of these buffers uses a straightforward window-based flow
control scheme. These buffers are expanded dynamically as required by appli-
cation communication patterns; space is freed upon acknowledgement of the
receipt of the corresponding message(s) on the receiver. For efficiency, acknowl-
edgements are batched together and piggy-backed on data messages. Explicit
flow control messages are used whenever the unacknowledged data for a commu-
nication endpoint exceeds a threshold. For improved locality and better small
message performance, messages below a threshold size are copied inline into the
send buffer; all other messages are allocated out-of-line (with explicit freeing of
storage upon acknowledgment of receipt). When an application component exits,
its send-side buffer is saved into the agent’s pool (if non-empty). This permits
the agent to retransmit the data, in case the component termination overlaps
with the migration of the component at the other end of the connection.

Data Stream Continuity. To maintain data stream continuity, the application
components need to reconnect after migration. The send buffers associated with
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the virtual socket connection at each end point contain sufficient state to handle
any retransmissions as necessary. Note that migration of an application compo-
nent is assumed to also migrate the corresponding send buffer(s).

Reconnection of application components is achieved using the following five-
step migration procedure (Figure 5 shows these steps for the migration of a
connection end-point from node B to node C):

1

3

4.GID_FOUND

2.Query_GID
3.GID_NOT_FOUND

5.Reconnect

1.Request_Query_GID

4

5

2

4

Agent BAgent A

AppA AppB

Agent C

AppB’

Fig. 5. Migration protocol in the thin agent implementation.

1. The migrated application component, upon detecting a broken connection,
sends a Request-Query message with its GID as a parameter to the local
agent (on node C). The other end-point of the connection (on node A) also
performs a similar action (with its local agent).

2. The agent on node C coordinates with other agents (e.g., using multicast)
to determine the other end-point of the connection.

3. The agent on the old site (from where the component migrated) will no
longer find the process corresponding to the GID, hence will not respond.

4. The agents on nodes A and C will receive information about the location of
each other’s end-points (node C and A respectively).

5. The application components on nodes A and C (a) reconnect with each other,
(b) exchange state information (about messages sent and acknowledged),
(c) retransmit any lost messages using the send buffers, and (d) resume
operation.

The primary advantage of the thin agent implementation is its efficiency; the
only overheads that remain are for the send-side buffering. However, this advan-
tage comes at the cost of increased complexity: the agent functionality injected
into the application must be aware of the underlying resource characteristics and
explicitly adapt to them. As mentioned earlier, this complexity does not affect
the user application.
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3.3 Using Other Transport Layers

Although we have discussed the thick and thin agent implementations on top
of reliable connection-based transport protocols, they can be as conveniently
implemented on top of other transports. We briefly sketch the differences for
two interesting transports. For unreliable connectionless layers (e.g., UDP), the
agent activity must also handle retransmission and removal of duplicates. In ad-
dition, the agents need to coordinate to locate the end-points of the connection,
similar to what was described above for the thin agent implementation. For ac-
tive message layers (e.g., FM), in addition to the above, the agent activity needs
to handle the extraction of messages that belong to other application streams.
An efficient implementation minimizes the amount of buffering that needs to
be provided, directly rerouting received messages into posted buffers when the
latter are available.

4 Persistent Network Connections: Performance

To assess the run-time overheads of the network connectivity layer, we mea-
sured the performance of the thick and thin agent implementations in two
environments—a 100 Mbps Ethernet LAN on top of TCP/IP, and a 1.28 Gbps
Myrinet LAN on top of Illinois Fast Messages (FM). All of the experiments
were run on Pentium Pro 200 MHz machines with 64 MB memory. The FM
experiments used the HPVM 1.2 release of the messaging layer.

4.1 Overheads of Transparent Connectivity

Figure 6 shows the impact on round-trip time and bandwidth of maintaining a
transparent migratable connection. Table 1 show the raw data for these plots.

Message bytes 128 256 512 1024 2048 4096 8192 16384 32768

Round Trip Time(microsecond)

Unintercepted 265 294 362 470 753 1104 2013 3804 7569

Thin agent 316 318 449 563 808 1152 2094 3958 8081

Thick agent 538 577 655 773 1066 1603 2424 4458 8459

Bandwidth(MBytes/sec)

Unintercepted 1.58 2.97 5.94 9.24 9.46 9.95 9.89 9.92 9.30

Thin agent 1.48 2.77 6.23 8.46 9.42 9.89 9.89 9.94 9.52

Thick agent 0.81 1.49 2.59 3.95 5.74 8.63 9.81 9.96 9.30

Table 1. Round-trip time and Bandwidth vs. message size for the thick and
thin agent implementations in the Ethernet/TCP environment.

The plots show that the thick agent implementation has measurable impact
on both round-trip time and bandwidth (increasing the former by up to 24%
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Fig. 6. Round-trip time and bandwidth achieved by the thick and thin agent
implementations in the Ethernet/TCP environment.

and decreasing the latter by up to 50%), primarily because of additional context
switches and data copies. On the other hand, the thin agent implementation
incurs no noticeable overheads as compared to the unintercepted (and hence
not-migratable) TCP/IP implementation. Both round-trip time and bandwidth
are within 5% of the unintercepted version, demonstrating that our connectivity
layer can efficiently maintain data stream continuity over migrations.
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www.manaraa.com

Transparent Network Connectivity in Dynamic Cluster Environments 41

Message bytes 128 256 512 1024 2048 4096 8192 16384 32768

Round Trip Time(microsecond)

Unintercepted 265 294 362 470 753 1104 2013 3804 7569

FM-thin-agent 37 47 65 100 181 250 373 738 1367

Bandwidth(MBytes/sec)

Unintercepted 1.58 2.97 5.94 9.24 9.46 9.95 9.89 9.92 9.30

FM-thin-agent 12.20 21.02 31.06 40.60 40.07 43.14 46.67 43.07 44.05

Table 2. Round-Trip time and Bandwidth vs. message size for the thin agent
implementation in the Myrinet/FM compared with Unintercepted socket inter-
face in the Ethernet/TCP environment.

4.2 Adaptation to Networking Substrate

As mentioned earlier, our communication layer can transparently adapt to the
characteristics of the underlying networking susbtrate. To assess the gains pos-
sible by such adaptation, we compared the round-trip time and bandwidth of
the thin agent implementation in the Myrinet/FM environment with the corre-
sponding implementation in the Ethernet/TCP environment.

In both cases, the applications used the unmodified traditional socket inter-
face; the interception layer decides which of the underlying communication mech-
anisms to use. The purpose of this experiment is to show the performance benefit
which an application can gain by adaptation. As mentioned earlier in Section 2,
using API interception, such adaptation is accomplished completely transpar-
ent to the application. To enable the applications to adapt to the networking
substrate, a negotiation phase is required during connection setup. Each end-
point of the communication sends out a connection request which includes in-
formation about the local communication configuration (which substrates are
available, and (optionally) any user preferences). The server-side agent decides
the substrate/transport layer that will be used for the connection, based on the
application parameters and current system load.

Figure 7 and Table 2 show these costs. The plots show that the mismatch
between application-level WinSock semantics and transport-level FM semantics
results in higher overheads in the communication layer as compared to the Eth-
ernet/LAN environment. To put our implementation in context, base FM has a
minimum round-trip time and maximum bandwidth of 21μs and 65 MB/s on our
experiment testbed. In contrast, our layer achieves a minimum latency of 35μs
and a maximum bandwidth of 46 MB/s. While these numbers by themselves are
quite good, we expect them to improve further with additional tuning of our
implementation.

More importantly, the plots show the advantages of our layer automatically
adapting itself to the underlying substrate. The thin agent implementation on
Myrinet/FM improves round-trip time by up to 8x, and bandwidth by up to 5x
as compared to the Ethernet/TCP environment. These improvements become
transparently available to the application components.
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5 Interfacing with General Applications

Although our work began in the context of process migration, the transparent
network connectivity functionality can be packaged into a stand-alone software
module for use by general applications. The interfaces to this module permit ap-
plications to explicitly dump and restore individual connection state using files,
enabling its use by applications that perform migration using checkpoint/restart
techniques. The connection dump/restore API is as follows:

makePersistent( SOCKET s [, File * dumpFile] )
dumps the connection state into a dumpfile.

resetup( SOCKET s [, File * dumpFile] )
restores the connection state associated with previous SOCKET handler s

from the dumpfile.

Additionally, when the application component is stateless (i.e., it does not
require any state to be stored other than that of the connection), the application
does not require any modification. Our package supports a scenario where there
is one original server process residing on the site where the server process is
supposed to be, with a number of backup servers distributed across the network.
Any connection can be migrated among these servers (e.g., for load-balancing or
fault-tolerance purposes), which by default listen to a publicly advertised port for
new incoming connections. By intercepting the corresponding API call, the agent
processes on the original and backup server sites can negotiate to divert connec-
tions as desired. The migration is totally transparent to applications, requiring
only that environment variable on the backup server sites convey information
about the original server site (IP address and port number).

6 Discussion

Although we have limited our attention here to providing data stream continuity
across migrations, our approach of transparently rerouting application requests
to a middleware layer can also be used to address several related concerns. We
briefly discuss some of these issues below.

Separation from the Underlying OS Interfaces. The layer can be used to decouple
an application from the interfaces provided by the underlying operating system.
The implementation of our communication layer on top of the FM interface
demonstrates this capability; application-level WinSock requests are translated
to semantically equivalent sets of FM operations.

Adaptation to Changing Resource Characteristics. The middleware layer pro-
vides a natural place for incorporating different policies for customizing ap-
plication use of underlying resources. This provides a powerful infrastructure
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for allowing the application to become aware of changes in network condi-
tions and adapt to them. These adaptation policies can be either application-
independent (e.g., interfacing with different transport layers or inserting com-
pression/decompression operations at the end-points), or application-aware (e.g.,
selective dropping of packets in a video stream based on its encoding to reduce
overall bandwidth requirements).

7 Conclusion

We have described the design of a communication layer that maintains net-
work connectivity across migrations of application components in a distributed
system. This layer is transparently inserted between unmodified applications
and commodity operating systems using API interception techniques. Results
based on implementations of the layer in two environments—Ethernet on top of
TCP/IP and Myrinet on top of FM—show that the layer introduces negligible
overheads during normal operation (when the components do not migrate), and
can additionally seamlessly choose the best among available networking sub-
strates.
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Abstract. Networks of workstations (NOWs) are being considered as
a cost-effective alternative to parallel computers. Many NOWs are ar-
ranged as a switch-based network with irregular topology, which makes
routing and deadlock avoidance quite complicated. Current proposals use
the up∗/down∗ routing algorithm to remove cyclic dependencies between
channels and avoid deadlock. However, routing is considerably restricted
and most messages must follow non-minimal paths, increasing latency
and wasting resources. In this paper, we propose a new methodology to
compute deadlock-free routing tables for NOWs. The methodology tries
to minimize the limitations of the current proposals in order to improve
network performance. It is based on generating an underlying acyclic con-
nected graph from the network graph and assigning a sequence number
to each switch, which is used to remove cyclic dependencies. Evaluation
results show that the routing algorithm based on the new methodol-
ogy increases throughput by a factor of up to 2 in large networks, also
reducing latency significantly.

1 Introduction

Networks of workstations are being considered as a cost-effective alternative to
parallel computers, since they meet the needs of a great variety of parallel ap-
plications at a lower cost [3]. NOWs offer a wide range of advantages when
implemented on a building-wide scale of hundreds of machines. The pool of re-
sources include memory, disk, and processors. Using switch-based interconnects
provides the wiring flexibility, scalability, and incremental expansion capability
required in this environment. In order to achieve high bandwidth and low laten-
cies, NOWs are often connected using gigabit local area network technologies.
There are recent proposals for NOW interconnects like Autonet [13], Myrinet
[4], Servernet II [10], and Gigabit Ethernet [14].

The three most important issues in network design are the network topology,
the switching technique, and the routing algorithm [7]. In current NOWs the
topology is defined by the customer. Switch designs must be flexible enough to
� This work was supported by the Spanish CICYT under Grant TIC97-0897-C04-01.
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support any topology with degree bounded by the number of switch ports. In
many cases, the connections between switches do not follow any regular pattern.
The resulting topologies are referred to as irregular topologies. Different switch-
ing techniques, like wormhole [8] or virtual cut-through [11], are suitable for
being implemented in NOWs. For example, Myrinet and Servernet II use worm-
hole switching. Routing in irregular topologies can be based on source routing
or distributed routing. In the former case, the message header contains the se-
quence of ports to be used at intermediate switches to reach the destination.
Routing tables are used at each host to obtain the port sequence for each mes-
sage. In the latter case, switches require routing tables. When a message arrives
at a switch, the destination address stored in its header is used, concatenated
with the incoming port number, to address the routing table of the switch. This
table returns the outgoing port number the message must be routed through. In
both routing strategies, the routing tables must be filled before messages can be
routed.

Several deadlock-free routing schemes have been proposed for NOWs, like
up∗/down∗ routing [13], adaptive-trail routing [12], minimal adaptive routing
[15], and smart-routing [6]. In up∗/down∗ routing [13], a breadth-first search
spanning tree (BFS) is computed. This algorithm is quite simple, and has the
property that all the switches in the network will eventually agree on a unique
spanning tree. However, in most cases up∗/down∗ routing does not always sup-
ply minimal paths between non-adjacent switches, becoming more frequent as
network size increases. On the other hand, minimal adaptive routing [15] pro-
vides minimal paths in most cases. However, this algorithm requires the use of
virtual channels, which are not implemented in current commercial switches.
The smart-routing algorithm [6] is impractical due to its high computation over-
head, since it computes a linear programming solver to balance the traffic while
it tries to break the deadlock cycles. The adaptive-trail routing algorithm [12]
is based on an Eulerian trail, which establishes a dependency order for all the
channels to avoid deadlocks. The main drawback of adaptive-trail routing is that
it is quite complex to find heuristics to form the Eulerian trail and to remove
cycles when shortcuts are added. In addition, an Eulerian trail may be hard to
find in some irregular topologies, since all the switches must have even degree
or exactly two switches must have odd degree. This is a serious limitation when
the network changes its topology, which is quite frequent in a LAN environment
because some links may fail or some components may be added/removed.

In this paper we propose and evaluate a new methodology to compute dead-
lock-free routing tables for irregular networks. The routing algorithm resulting
from this methodology increases throughput by a factor of up to 2 in large net-
works, also reducing latency significantly. The rest of the paper is organized as
follows. In Section 2, the up∗/down∗ routing scheme and its main drawbacks are
described. Section 3 presents some terminology and definitions. Section 4 de-
scribes the proposed methodology, also discussing the applied heuristic. Section
5 shows performance evaluation results for the routing algorithm based on the
new methodology. Finally, in Section 6 some conclusions are drawn.
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Fig. 1. Link direction assignment for a 16-switch network.

2 Up /Down Routing

Up∗/down∗ routing is the most popular routing scheme currently used in com-
mercial networks, such us Myrinet [4] or Autonet [13]. It is a generic routing
algorithm valid for being applied to any network with regular or irregular topol-
ogy. The up∗/down∗ routing scheme is deadlock-free and, when implemented in
a distributed way, provides partially adaptive routing. Routing is based on a
methodology to compute routing tables which makes an assignment of direction
to the operational links in the network by building a BFS spanning tree. The
“up” end of each link is defined as: 1) the end whose switch is closer to the root
in the spanning tree; 2) the end whose switch has the lower identifier, if both
ends are at switches at the same tree level. The result of this assignment is that
each cycle in the network has at least one link in the “up” direction and one link
in the “down” direction. To avoid deadlocks while still allowing all links to be
used, this routing scheme uses the following up∗/down∗ rule: a legal route must
traverse zero or more links in “up” direction followed by zero or more links in
“down” direction. Thus, cyclic channel dependencies 1 [8] are avoided because a
message cannot traverse a link along the “up” direction after having traversed
one in “down” direction.

Unfortunately, up∗/down∗ routing has several drawbacks that limit its per-
formance. Before constructing the routing tables, a breadth-first search spanning
tree (BFS) is computed. In order to avoid deadlocks, a direction is assigned to
all the network links. However, this assignment depends on the structure of the
BFS spanning tree. Moreover, given that the label of the links connecting nodes
1 There is a channel dependency from a channel ci to a channel cj if a message can

hold ci and request cj. In other words, the routing algorithm allows the use of cj

after reserving ci.
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at the same tree level is based on their node identifiers, which are assigned ran-
domly, it follows that up∗/down∗ routing also removes channel dependencies
randomly. Therefore, no optimization can be applied and most minimal paths
will be forbidden.

On the other hand, the up∗/down∗ routing scheme does not guarantee that
the removal of cyclic dependencies is done by imposing the lowest number of
routing restrictions, as is shown in [1]. Moreover, in [2] it is shown by means of
genetic algorithms that for large networks it is usually possible to find a better
assignment of direction to the operational links in the network than the one
provided by current methodologies.

As an example, Figure 1 shows the link direction assignment for a 16-switch
network using up∗/down∗ routing. Switches at the same tree level are at the
same vertical position. A cycle between nodes at the same tree level is shown
in bold lines in the figure. This cycle is broken at two points (nodes 9 and 15),
since the transition from “down” to “up” channels is not allowed by up∗/down∗

routing. A better direction assignment would reverse the direction of the channel
that links nodes 15 and 2. The cycle will still be broken at node 9, and the change
will increase the number of minimal paths. For example, the path length from
node 2 to node 7 will decrease from 4 to 2 hops.

Additionally, up∗/down∗ routing prevents routing across the leaf nodes since
the direction of their outgoing channels are usually “up”, and the up∗/down∗ rule
does not allow the transition from “down” to “up” channels. As shown in Figure
1, nodes 5, 8, 9, and 15 do not allow routing across them. In a BFS spanning tree
the number of leaf nodes increases as network size increases. Thus, the number
of routing restrictions will increase with network size, preventing most messages
from following minimal paths.

Moreover, the number of different BFS spanning trees that can be computed
on a network graph is limited by the number of switches in the network. This is
an important limitation for finding more efficient heuristics to improve network
performance. Thus, we suggest that a new underlying graph, more general than
the BFS spanning tree, should be better used. In particular, we wonder if it will
be possible to find another method to compute routing tables that introduce less
routing restrictions than the one based on a BFS spanning tree.

3 Preliminaries

Graphs will be used to model the underlying network topology. We will closely
follow the graph theoretical terminology and notation in [5]. Let G(V, E) denote
a graph with node set V and edge set E. The interconnection topology of a
switch-based network is modeled by a graph G(V, E), where each node v in
V corresponds to a switch, and each edge in E corresponds to a bidirectional
physical link (channel).

A trail is a finite sequence of edges of the form v0 → v1 → . . . ,vm−1 → vm,
in which all the edges are distinct. If the nodes v0, v1, . . . vm−1, vm are also
distinct, it is called a path. When v0 = vm, it is called a cycle. A graph is said
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procedure Depthfirst(vk)
begin
while all nodes have not been visited yet do

for i := 1 to links(vk) do
select output channel in node vk: vk → vq

according to heuristic.
if node vq has not been visited yet then

add the channel vk → vq to the tree.
add the node vq to the tree.
mark vq as visited.
call to Depthfirst(vq ).

endif.
endfor.

endwhile.
endprocedure.

Fig. 2. DFS spanning tree computation algorithm.

to be connected if every pair of its nodes are joined by a path. A graph is said
to be acyclic if it is not possible to form a cycle. A spanning tree is an acyclic
and connected graph containing all the nodes in the network. However, it may
contain only a subset of the links. The average distance is the average number
of links in the shortest paths between any two nodes. When paths are computed
by assuming that there are no routing restrictions then the average distance is
called average topological distance. Every non-acyclic graph contains a basic set
of independent cycles. An independent cycle is a cycle in the graph such that it
has at least one edge that does not belong to any other independent cycle.

4 A New Methodology to Compute Deadlock-Free
Routing Tables

In this section, we propose a new methodology to compute deadlock-free routing
tables, which is applicable to any network with regular or irregular topology. The
routing algorithm based on the proposed methodology is valid for NOWs using
any switching technique, including wormhole and virtual cut-through, and can
be implemented using source or distributed routing. Like up∗/down∗ routing, the
proposed routing scheme is suitable for networks without virtual channels, which
is the case for most commercial interconnects. In this case, the only practical
way of avoiding deadlock consists of restricting routing in such a way that cyclic
channel dependencies are avoided [8]. Nevertheless, the new methodology can
also be applied to networks with virtual channels by combining it with the
design methodology proposed in [9] and adapted to NOWs in [15].

The new methodology is based on obtaining a spanning tree on the network
graph. Starting from this spanning tree, the remaining links are added and rout-
ing tables can be computed. Deadlock-free routing is guaranteed by restricting
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Fig. 3. Labeling the main and secondary branches.

routing on the added links in such a way that cyclic channel dependencies are
avoided.

First, we describe how the spanning tree is computed, later we explain how
the cyclic dependencies between channels are removed, and finally, we propose
a heuristic required to compute the spanning tree.

4.1 Obtaining the Spanning Tree

Spanning trees are suitable to achieve deadlock-free routing since they form an
acyclic connected graph. Our methodology to compute routing tables is based on
computing a depth-first search spanning tree (DFS). A recursive procedure used
to compute the DFS spanning tree is shown in Figure 2. The number of links
connected to other switches for switch vk will be referred to as links(vk). Initially,
all the nodes are marked as not visited. An initial node, vi, must be chosen and
marked as visited before starting the computation of the DFS spanning tree.
The selection of the node vi is made by using heuristics. We will address this
issue later. The recursive procedure builds a path (main branch) that begins at
node vi and ends at the node where the recursive procedure returned the first
time. As the main branch may not contain all the nodes in the network graph,
new paths (secondary branches) must be found to connect the remaining nodes.

Unlike BFS spanning trees, DFS spanning trees allow more flexibility in the
definition of heuristic rules, possibly leading to improved performance.

As a DFS spanning tree is acyclic, when routing is based on it no deadlock is
possible. However, when the remaining channels are added to the spanning tree,
cyclic dependencies may arise. Thus, a method is needed to break the cycles.
The following section addresses this goal.

4.2 Removing Cyclic Dependencies

The method for removing cycles is based on labeling the nodes in the network
graph with positive integer numbers and then breaking the cycles using this
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Fig. 4. Up∗/down∗ scheme.

labeling. A different label is assigned to each node. Next, the routing tables are
filled with all the possible shortest paths between every pair of nodes.

In a network with N nodes and M edges, the number of independent cycles
will be M −N +1 [5]. This is the minimum number of channel dependencies that
must be removed in order to break all the cycles. These channel dependencies
arise between channels belonging to the DFS spanning tree and channels that
do not belong to it. Additionally, there may exist cycles formed by channels that
do not belong to the DFS spanning tree, and they also have to be removed.

Let L(x) be a function that returns the label assigned to node x. In order to
reduce the number of routing restrictions, the DFS spanning tree is labeled in
two ways, one for the main branch and another one for the secondary branches.
The main branch is labeled by using increasing integers in the order nodes were
visited while building the DFS spanning tree. Every secondary branch is labeled
in reverse order, that is, the lower label is assigned to the leaf node of the branch.
Additionally, the labels for secondary branches are interleaved between those for
the branch they are connected to. Figure 3 shows an example of how to label
the nodes in the DFS spanning tree.

In order to remove cyclic channel dependencies the following rule is applied:
Remove the channel dependency between channels (x,y) and (x,z), x, y, z ∈ V ,
if L(y) > L(x) < L(z).

It is easy to prove that if a different label is assigned to each node, every
cycle will have a single node that satisfies the above condition. This is a general
method to break cycles in a graph. Note that there is no danger of breaking
the DFS spanning tree, since nodes along branches are labeled in decreasing or
increasing order.

Once all the cyclic channel dependencies have been removed by breaking
each cycle as indicated above, the remaining channel dependencies define the
routing algorithm. Note that the resulting routing algorithm follows the same
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up∗/down∗ rule (see Section 3) as the up∗/down∗ routing algorithm. However,
link direction assignment is different from the one used in up∗/down∗ routing
because it is based on DFS instead of BFS spanning tree. Thus, the proposed
routing scheme can be considered as an up∗/down∗ routing algorithm, although
based on DFS instead of BFS spanning tree, that is, it is based on a different
methodology to compute routing tables.

In general, the greater the number of links connecting nodes at the same
tree level in the BFS spanning tree, the greater the difference in the number
of channel dependencies that have to be removed in a BFS spanning tree with
respect to DFS spanning tree. The reason is that the assignment of direction
to these links in the BFS spanning tree depends on the identification numbers
of the nodes at the same tree level. Obviously, it strongly depends on network
topology.

b a h i

d

g f ce

Fig. 5. Generated DFS spanning tree.

0 1 2 3 4

5

6 7 8

Fig. 6. Label assigned to each node and removed channel dependencies.

To illustrate the new methodology, we present an example for the 9-switch
network depicted in Figure 4. The channel dependencies that must be removed
according to the original up∗/down∗ routing algorithm are shown in dotted lines
in Figure 4. As can be seen, the number of routing restrictions is equal to 34
(17 bidirectional restrictions). The DFS spanning tree obtained by using the
algorithm in Figure 2 is shown in bold lines in Figure 5, whereas the remaining
channels in the network are shown in thin lines. Then, the nodes in the DFS
spanning tree are labeled according to the procedure described above. Figure 6
shows the label assigned to each node. Finally, cyclic channel dependencies are
removed by applying the rule proposed above. As can be observed, the number
of routing restrictions is now equal to 30 (15 bidirectional restrictions), which is
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Table 1. Behavioral routing metrics.

Network
size

Average
distance

Restrictions
per node

Long
paths Diameter

Crossing
paths

BFS DFS BFS DFS BFS DFS BFS DFS BFS DFS

9 1.583 1.556 3.774 3.552 5 % 3.7 % 3 3 12 6
16 2.208 2.108 3.375 3.125 9 % 4 % 4 4 37 23
32 3.102 2.792 3.562 2.821 21 % 9 % 7 6 173 73
64 4.013 3.634 3.281 2.687 26 % 14 % 8 7 593 204

smaller than that imposed by the up∗/down∗ scheme based on a BFS spanning
tree.

Table 1 shows the values of some behavioral routing metrics that have been
computed for several network sizes when using the up∗/down∗ routing algorithm
based on two methodologies to compute routing tables, that is, the original
methodology that makes use of a BFS spanning tree and the new methodology
based on a DFS spanning tree. Topologies have been randomly generated. We
assume that switches have 8 ports, using 4 of them to connect to hosts 2.

The computed metrics are: (1) average distance; (2) average number of rout-
ing restrictions per node; (3) percentage of paths whose length exceeds the topo-
logical path length or minimal path, referred to as long paths; (4) diameter and
(5) the maximum number of routing paths crossing through any network chan-
nel, referred to as crossing paths.

As can be seen, the values achieved by the routing scheme based on a DFS
spanning tree improve over the ones achieved by the original up∗/down∗ routing
scheme. Moreover, improvement increases with network size. From these results,
we conclude that messages follow minimal paths more frequently under the new
methodology than under the original methodology based on a BFS spanning
tree. The new methodology also achieves a higher adaptivity degree (less routing
restrictions) and a better traffic balance (lower value for crossing paths). This
is mainly due to the smaller number of channels dependencies that have to be
removed in the routing scheme based on DFS spanning tree in order to break
cycles in the network.

4.3 Heuristic

Unlike BFS spanning tree, DFS spanning tree allows us to apply more flexible
heuristic rules while computing it. We wonder if it will be possible to compute a
DFS spanning tree that allows us to achieve the highest network performance. We
have analyzed many different networks and concluded that the highest network
performance is usually achieved when the average distance and the crossing paths
metrics are low. In this way, the following heuristic is used to compute the DFS
2 For further details on topology generation see Section 5.1.
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spanning tree. Actually, we compute the DFS spanning tree starting from every
node in the network. Also, for each tree, when selecting an output channel (see
Figure 2) the link to the node with higher average topological distance to the
rest of the nodes will be selected first. Finally, the DFS spanning tree with lower
average distance will be chosen.

5 Performance Evaluation

In this section, we evaluate by simulation the performance of the routing scheme
based on the methodology proposed in Section 4 for some network configurations.
We will refer to it as UD−DFS because it is an up∗/down∗ routing scheme
based on a DFS spanning tree. For comparison purposes, we have also evaluated
the original up∗/down∗ routing, based on a BFS spanning tree, which will be
referred to as UD−BFS. In the BFS spanning tree the root switch is chosen
as the switch whose average distance to rest of the switches is the smallest one
[15]. Note that the proposed routing scheme is indeed identical to the original
up∗/down∗ routing except that link direction assignment is different. We have
selected the UD−BFS algorithm for comparison because it is the one currently
used in commercial networks. The remaining algorithms mentioned in Section
1 have not been considered due to their computational cost or their limited
applicability.

We assume that the network topology is irregular because this is frequently
the case in NOW environments, and regular topologies can be considered a par-
ticular case of the former. In order to obtain realistic simulation results, we have
used timing parameters for the switches taken from a commercial network. We
have selected Myrinet because it is becoming increasingly popular due to having
very good performance/cost ratio. Also, we have chosen wormhole switching and
deterministic source routing because they are implemented in Myrinet.

5.1 Network Model

Network topology is completely irregular and has been generated randomly. We
have evaluated networks with size of 9, 16, 32, and 64 switches. We have gener-
ated ten different topologies for each network size analyzed. The maximum varia-
tion in throughput improvement of UD−DFS routing with respect to UD−BFS
routing is not larger than 18% . Results plotted in this paper correspond to the
topologies that achieve the average behavior for each network size. We assume
that every switch in the network has 8 ports, using 4 ports to connect to work-
stations and leaving 4 ports to connect to other switches. For message length,
32-flit and 512-flit-messages were considered. Different message destination dis-
tributions have been used like uniform, bit-reversal, perfect shuffle and matrix
transpose.



www.manaraa.com

A New Methodology to Compute Deadlock-Free Routing Tables 55

5.2 Switch Model

The path followed by each message is obtained using table-lookup at the source
host, very much like in Myrinet networks. Therefore, deterministic source routing
is assumed. Wormhole switching is used. Each switch has a crossbar arbiter that
processes one message header at a time to select the outgoing channel. It is
assigned to waiting messages in a demand-slotted round-robin fashion. If the
output channel is busy, the message must wait in the input buffer until its next
turn. A crossbar inside the switch allows multiple messages to be transmitted
simultaneously without interference. We take the values for temporal parameters
from Myrinet switches, that is, the latency through the switch for the first flit is
150 ns, and after transmitting the first flit, the switch transfers at the link rate
of 6.25 ns per flit. The clock cycle is 6.25 ns. Flits are one byte wide and the
physical channel is one flit wide.
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Fig. 7. Average message latency vs ac-
cepted traffic. Network size is 9 switches.
Message length is 32 flits. Uniform distri-
bution.
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Fig. 8. Average message latency vs ac-
cepted traffic. Network size is 16 switches.
Message length is 32 flits. Uniform distri-
bution.

5.3 Simulation Results

Figures 7, 8, 11, and 12 show the average message latency versus accepted traffic
for networks with 9, 16, 32, and 64 switches, respectively. Message size is 32 flits
and uniform destination distribution is used. In particular, Figure 7 shows the
behavior of the 9-switch network shown in Figure 4. As can be seen, UD−DFS
routing reduces latency and increases throughput with respect to UD−BFS
routing. In large networks, the improvement is more noticeable. Throughput im-
provement ranges from a factor of 1.17 in the 9-switch network up to a factor of 2
in the 64-switch network. The reason is that when the network size increases the
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Fig. 9. Average message latency vs ac-
cepted traffic. Network size is 32 switches.
Message length is 32 flits. Uniform distri-
bution.
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Fig. 10. Average message latency vs ac-
cepted traffic. Network size is 64 switches.
Message length is 32 flits. Uniform distri-
bution.
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Fig. 11. Average message latency vs ac-
cepted traffic. Network size is 32 switches.
Message length is 32 flits. Uniform distri-
bution.
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Fig. 12. Average message latency vs ac-
cepted traffic. Network size is 64 switches.
Message length is 32 flits. Uniform distri-
bution.

number of routing restrictions per node for UD−BFS routing increases signifi-
cantly, reducing the number of minimal paths followed by messages, and increas-
ing latency. Also, UD−BFS routing concentrates traffic near the root switch of
the spanning tree, leading to a premature saturation of the network. However,
the proposed routing strategy spreads traffic more evenly across different links,
thus achieving a higher throughput.

Figures 13, 14, 15, and 16 show the results for networks with 9, 16, 32, and
64 switches, respectively, when long messages are used (512 flits), for the same
destination distribution. We can observe that the improvement in performance
decreases slightly with respect to the one achieved with short messages, due to
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Fig. 13. Average message latency vs ac-
cepted traffic. Network size is 9 switches.
Message length is 512 flits. Uniform dis-
tribution.
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Fig. 14. Average message latency vs ac-
cepted traffic. Network size is 16 switches.
Message length is 512 flits. Uniform dis-
tribution.
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Fig. 15. Average message latency vs ac-
cepted traffic. Network size is 32 switches.
Message length is 512 flits. Uniform dis-
tribution.
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Fig. 16. Average message latency vs ac-
cepted traffic. Network size is 64 switches.
Message length is 512 flits. Uniform dis-
tribution.

the fact that the latency of long messages is less sensitive to the distance between
hosts. As a consequence, the benefits of following shorter paths decrease.

Figure 17 shows the results under bimodal traffic, which is formed by 25% of
long messages and 75% of short messages. As can be observed, the improvement
in performance slightly decreases when a small percentage of long messages is
introduced.

On the other hand, when message distributions showing temporal locality,
such as bit-reversal, matrix transpose, and perfect shuffle are used, the im-
provement in performance of UD−DFS with respect to UD−BFS is noticeably
larger, as can be observed in Figures 18, 19, and 20. The best improvement
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Fig. 17. Average message latency vs ac-
cepted traffic. Network size is 32 switches.
Message length is 75% of 32 flits and 25%
of 512 flits. Uniform distribution.
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Fig. 18. Average message latency vs ac-
cepted traffic. Network size is 32 switches.
Message length is 32 flits. Bit-reversal dis-
tribution.
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Fig. 19. Average message latency vs ac-
cepted traffic. Network size is 32 switches.
Message length is 32 flits. Matrix trans-
pose distribution.
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Fig. 20. Average message latency vs ac-
cepted traffic. Network size is 32 switches.
Message length is 32 flits. Perfect shuffle
distribution.

(a factor of 2.1) is achieved when matrix transpose distribution is used. Factors
of 1.8 and a 2 are achieved for perfect shuffle and bit-reversal distributions,
respectively. The reason for the larger improvement is that these message distri-
butions are more sensitive to short paths because all the messages from a given
host are sent to the same destination.

However, when message distributions showing spatial locality are used, the
improvement in performance of UD−DFS with respect to UD−BFS decreases.
In particular, for a 32-switch topology and 32-flits messages we have used a local
message distribution in which 60% of messages are uniformly distributed inside
a sphere centered in their source host, with radius equal to 5 links (messages
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have to traverse up to 5 links to reach the destination host). We have observed
that the improvement in throughput of UD−DFS with respect to UD−BFS
decreases from 65% for uniform message distribution down to 15% when local
message distribution is used. The reason is that when traffic has spatial locality,
the average distance traversed by message decreases, increasing the probability
that most messages follow minimal paths.

6 Conclusions

In this paper, we have proposed a new methodology to compute deadlock-free
routing tables that is simple and can be applied to both regular and irregular
topologies, source and distributed routing, and is valid for every switching tech-
nique. The proposed methodology is based on a depth-first search spanning tree
(DFS). DFS spanning tree has been chosen because it simplifies the assignment
of an ordering to the nodes in the network in order to remove cyclic channel
dependencies. Routing tables are built by considering all the possible shortest
paths between every pair of nodes (or just one of them if deterministic routing
is preferred). The routing algorithm based on the proposed methodology can
be also considered as an up∗/down∗ routing algorithm, although based on DFS
instead of BFS spanning tree.

The main contribution of the proposed methodology is that it is able to im-
prove network performance without adding resources to the network that would
increase its cost. Simply, routing tables must be updated. The simulation results
modeling a Myrinet network show that throughput is doubled in large networks
with respect to the up∗/down∗ routing algorithm based on BFS spanning tree.
For smaller networks, performance improvement is also smaller but the proposed
routing scheme always improves latency and throughput.

As future work, we plan to implement the proposed routing scheme on the
GM software from Myrinet.
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Abstract. The VIRTUal System (VIRTUS) project is focused on pro-
viding advanced features for high performance communication and I/O
in cluster environments. In this paper we report our experience in port-
ing MPICH 1.1.x atop the Fast Messages library and how we used the
features of FM to provide efficient communication for non-contiguous
data structures. The porting concerned two different internal interfaces
of MPICH 1.1.x called channel and ADI-2 , respectively. The ADI-2 in-
terface offers a rich set of primitives that allow the implementation of
communication support to MPI derived data types. We present extensive
experimental data gathered on Solaris, Linux and WinNT platforms that
show how the ADI-2 interface achieves the same performance levels of
FM for contiguous and non-contiguous data. These results confirm the
effectiveness of FM’s interface and implementation in delivering the raw
hardware performance of the communication subsystem to the applica-
tions.

1 Introduction

The availability of new technologies for Gigabit LANs offers comparable latency
and bandwidth to the proprietary interconnect traditionally found in massively
parallel processors. This has made increasingly attractive building large parallel
systems from commodity off-the-shelf components that can be used as a single,
unified computing resource (clusters).

The commodity nature of clusters’ components, however, makes challenging
to achieve the single system image mentioned above. This motivated an in-
tense research activity in the area of system software to improve the integration
between the basic components of clusters. A first step in this regard was the
development of low-level communication libraries capable to deliver to the ap-
plications the performance of modern Gigabit LANs: Active Messages (AM) [5],
Fast Messages (FM) [12], U-Net [6], VMMC-2 [4], PM [14]. A second step was to
integrate low-level libraries into higher level, standard communication interfaces
to provide programming environments on clusters similar to those available on
commercial MPP machines. For instance, in the HPVM project the full band-
width of the low-level library FM was made available to a range of high level
interfaces [3]. In particular, HPVM includes MPI-FM [11], an high performance
implementation of the Message Passing Interface 1.0 (MPI) standard [13], based
on the MPICH library [8].

B. Falsafi and M. Lauria (Eds.): CANPC 2000, LNCS 1797, pp. 84–99, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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In the VIRTUal System (VIRTUS) project, following an approach similar
to HPVM and relying on the same low-level library FM, we focused on ad-
vanced features for high performance communication, such as support for non-
contiguous data structures and collective communications, and on tight integra-
tion between high performance communication and parallel I/O.

The core of VIRTUS is the MPI 1.1 standard and we used the MPICH
1.1.x implementation of this interface to develop our prototype. This version of
MPICH includes many features that were not present in the one used in HPVM,
including a richer internal layered structure and the parallel I/O features recently
defined in the MPI-2 standard.

In this paper we report our experience in porting MPICH 1.1.x atop the
Fast Messages library and how we used the features of FM to provide efficient
communication for non-contiguous data structures in our VIRTUS prototype. In
particular, we discuss the porting atop FM of two different internal interfaces
of MPICH 1.1.x called Channel and ADI-2 , respectively. The ADI-2 interface
substitutes the former ADI, used to develop MPI-FM, and offers a richer set
of primitives. Our prototype is highly portable and we present extensive experi-
mental data gathered on Solaris, Linux and WinNT platforms that show how the
new ADI-2 interface achieves the same performance of the former ADI for both
contiguous and noncontiguous data. The results also confirm the effectiveness of
FM’s interface and implementation in delivering the raw hardware performance
of the communication subsystem to the applications.

The paper is organized as follows. In section 2 we briefly discuss the Myrinet
network used in our experiments, the Fast Messages and the MPICH libraries. In
section 3 we discuss the porting on FM of the ADI-2 and channel interfaces and
present its basic performance on three platforms: Solaris-SPARC, Linux-Pentium
and WinNT-Pentium. In section 4 we discuss the integration of derived data-
type support into VIRTUS and present the corresponding performance data. In
section 5 we report about related work, and in section 6 we conclude the paper.

2 Background

2.1 Myrinet and Fast Messages

Myrinet [1] is a high speed LAN composed of network adapters connected to
crossbar switches by point-to-point links. The network adapter includes fast
SRAM and a custom VLSI chip (the LANai), which contains link interfaces, a
processor and three DMA engines (one each for the incoming channel, outgoing
channel, and the I/O bus). The physical peak bandwidth of the links is of nearly
160 MB/s in each direction and the latency of the switches is of about half a
microsecond.

Data transfers between the host and the LANai can be performed through
DMA, using pinned-down buffers in the kernel address space. This implies that
general purpose communication libraries must introduce a memory copy between
these buffers and user-provided buffers. Alternatively, host-LANai interaction
can be performed by mapping the interface memory into the user address space
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Table 1. FM layer calls.

Function Operation

FM begin message(dest,len,handler) Start of a message to be sent, returns a stream
FM send piece(stream,buffer,len) Send a piece of the message
FM end message(stream) End of a message to be sent
FM receive(buffer,stream,len) Get a piece of data from the message
FM extract() Process received messages

and by using programmed I/O to read/write the interface memory. While this
method implies the processor is busy during the whole transfer, on modern I/O
buses (PCI) it may achieve the same bandwidth and lower latency than DMA. As
an additional advantage it does not require data to be stored in a pinned-down
buffer, leading to true 0-copy protocols.

Fast Messages (FM) [12] is a low-level, high performance communication
library characterized by an accurate choice of the services to be provided at the
library interface. By providing a few key services – buffer management, reliable
and in-order delivery – the FM programming interface allows for a leaner, more
efficient implementation of the higher level communication layers.

According to the Fast Messages programming model, the parallel system
consists of n nodes. Messages can be sent to any process and they have an asso-
ciated handler function, which is invoked on message reception as in the Active
Messages model [5]. Message reception is performed through the FM extract
primitive which implements a flexible polling mechanism. Messages are sent and
received as streams of bytes and primitives are provided for the piecewise ma-
nipulation of data, both on the send and on the receive side (see table 1). Hence,
messages can be gathered and scattered on-the-fly so that their size and content
can be decided dynamically during message transmission.

Internally the library segments messages into packets of fixed size. The sender
host uses programmed I/O to inject the packets into the network. At the receiver
side, incoming packets are DMAed to a properly allocated (pinned-down) region
into the host kernel memory. Data have to be copied at least once to be made ac-
cessible to the application. Note that segmentation and reassembly of messages
allows the overlapping of the send, network, and receiver protocol processing
during the transfer of a message. These operations are completely transparent
and independent of the piecewise manipulation of the data stream possibly per-
formed by the user. In particular, handlers execute asynchronously with respect
to the application program and can interleave their execution according to the
arrival order of incoming packets.

2.2 The Internal Structure of MPICH 1.1.x

The software architecture of MPICH has been designed to support the conflict-
ing goals of portability and high performance. This was achieved by maximizing
the amount of code that can be shared without compromising performance. As
a result, a large amount of the code is system independent. For instance, im-
plementation of most of the MPI opaque objects, including datatypes, groups,
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attributes, and even communicators, is platform-independent. Many of the com-
plex communication operations can then be expressed portably in terms of lower-
level ones. After a working implementation of the library is available, the porting
may be gradually tuned for a specific platform by replacing parts of the shared
code with platform-specific code.

The central mechanism for achieving the goals of portability and performance
is a specification called the Abstract Device Interface (ADI) [8]. All MPI func-
tions are implemented in terms of the macros and functions that make up this
interface. All such code is portable. Hence, MPICH may contain many imple-
mentations of the ADI, which provide portability, ease of implementation, and
an incremental approach to trading portability for performance.

One implementation of the ADI is in terms of a lower level (yet still portable)
interface called the Channel interface [9]. The Channel interface can be ex-
tremely small (five functions at minimum) and provides the quickest way to port
MPICH to a new environment. Such a port can then be expanded gradually to
include specialized implementation of more of the ADI functionality.

MPICH 1.1.x is implemented in terms of a second generation ADI (ADI-
2) [10], designed after the experience gathered from a former ADI used to im-
plement previous versions of MPICH. The goals of the ADI-2 design were: lower
latency in special cases, support for non-contiguous messages, simpler manage-
ment of heterogeneity, and better error handling.

The main difference with respect to the previous design is a specialization
of the point-to-point communication routines, including operations for general
datatypes, to reduce overhead in special cases and increase bandwidth in non-
contiguous data transfers. The interface and implementation of ADI-2 routines
have been changed to facilitate the development of multi-device (i.e. hetero-
geneous) implementations and to allow a more efficient error handling. Inter-
nally, the ADI-2 routines carry out most of their work by calling other routines
designed to hide heterogeneity. Calls to these routines are performed through
function pointers stored in a device descriptor. This enables the library to use
different descriptors to manage multiple heterogeneous communication subsys-
tems. Efficient error handling has been achieved by placing error checks nearest
to the first use of data so to limit the number of redundant memory operations.

3 Porting MPICH 1.1.x on Fast Messages

3.1 The Channel Layer

We carried out the porting of MPICH 1.1.x into two steps. We first imple-
mented a minimal Channel interface leading quickly to a working version of
VIRTUS that will be referred to in the following as VIRTUS 1.0. The mini-
mal Channel interface consists of only five required functions. Three routines
(MPID SendControl, MPID RecvAnyControl, and MPID ControlMsgAvail) send
and receive envelope (or control) information; two routines (MPID SendChannel
and MPID RecvFromChannel) send and receive data.
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The Channel interface can be used to implement different data exchange
mechanisms. At the moment, the MPICH implementation uses the eager and
the rendezvous protocols. In the eager protocol, data is sent to the destination
immediately. If the destination is not expecting the data (e.g., no receive buffer
has yet been posted for it by the application), the receiver must allocate some
space to store the data locally (unexpected messages). This mechanism often
offers the highest performance, but it can cause problems when large amounts
of data are sent before their matching receives are posted. In the rendezvous
protocol, the control information describing the message is always sent, while
data is sent to the destination only when requested (i.e. when a receive buffer that
matches the message is posted). When this happens the destination sends the
source a request for the data. This mechanism is the most robust but, depending
on the underlying system software, may be less efficient than the eager protocol.

At compilation time it is possible to set the message length at which the
rendezvous protocol replaces the eager protocol. The rendezvous protocol is al-
ways used to implement the synchronous mode of communication defined in the
MPI standard. Since typical modern host configurations can tolerate the eager
protocol even for quite long messages, we enabled the rendezvous protocol only
for very large messages. Since in this case there are no notable differences in
performance, all measures reported in this paper refer to tests using the eager
protocol.

The semantics of the Channel interface requires that the implementation per-
forms the necessary buffer management and flow control. Unfortunately, even
though FM includes flow control, its internal buffer management is not sufficient
to satisfy the requirements of the Channel receive functions. In particular, since
there is no way to post in advance the final receive buffer, data extracted by han-
dlers must be copied into a temporary buffer managed internally by the Channel
layer. We therefore implemented a buffering system, where handlers can copy
control and data information extracted from the network. Since one copy on the
receive side is always performed when data are extracted from the DMA region
(see section 2.1), this solution implies that two copies are performed on message
reception if messages are expected. An additional copy into a temporary buffer
managed by the layers above the Channel interface is required for unexpected
messages.

Conversely, on the send side, a transmission with no copies is easily imple-
mented by mapping the MPID SendControl and MPID SendChannel primitives
to distinct FM send piece calls. For very short messages (less than 512 bytes
in our tests), however, the data part of the message is copied in a space con-
tiguous to the control part, in order to reduce latency by avoiding the second
FM send piece call.

The effort to port the Channel interface on top of FM was very limited.
Basically no changes were required to the ADI-2 implementation. In table 2 the
number of code lines modified or added are reported for all these files.
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Table 2. Coding effort needed to implement VIRTUS 1.0.

File # code lines modified/added

packets.h 39
mpiddev.h 69
mpid time.h 40
chdef.h 70
chconfig.h 10
fmqueue.h 43
fmqueue.c 127
fmpriv.c 484

3.2 The Second Generation ADI Layer

The porting of the ADI-2 interface atop FM was twofold motivated. On the one
hand we wanted to avoid the additional copy on the receive side that we had to
introduce in the implementation of the Channel interface. On the other hand,
we wanted to exploit the management of non-contiguous data provided at ADI-
2 level, to implement efficient communication for MPI derived data types. We
briefly discuss here the former issue, while the latter one will be treated in the
next section.

Starting from VIRTUS 1.0, we rewrote part of the send and receive routines.
This work led to a new version of VIRTUS that will be referred in the following as
VIRTUS 2.0. On the send side, VIRTUS 2.0 retains the Channel implementation
of the ADI-2 since our porting already provided a 0-copy protocol. Conversely,
some work was needed on the receive side. We eliminated the queuing system
introduced into the Channel layer and redesigned the FM handler so that it
could directly access the data structures used by the ADI-2 receive routines to
enqueue buffers for expected and unexpected messages.

A potential problem of this solution was the presence of race conditions
between the receive routines called by the application via the MPI interface, and
the handler’s instances, which are asynchronously invoked when the FM packets
are extracted from the network. The problem was solved by using special flags
to synchronize concurrent accesses to the message descriptors. The result was a
receive protocol which requires, for expected messages, just the copy from the
DMA region to the receive buffer provided by the application. For unexpected
messages, the use of a temporary buffer cannot be avoided, which leads to a
2-copy protocol.

The effort to port the ADI-2 interface on top of FM was again very limited.
The original ADI-2 implementation included: 33 files (adi2xxx.c and chxxx.c)
implementing ADI-2 routines, 18 header files, and a few more files implementing
auxiliary routines. In table 3 the number of code lines modified or added are
reported for all files involved in the porting. For files already included in table 2,
the total line count (i.e. including VIRTUS 1.0 code) is reported.
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Table 3. Coding effort needed to implement VIRTUS 2.0.

File # code lines modified/added

packets.h 39
mpiddev.h 72
mpid time.h 40
chdef.h 87
chconfig.h 10
chinit.c 40
chshort.c 23
chbeager.c 38
chbrndv.c 45
chchkdev.c 20
fminit.c 160
fmpriv.c 614

Table 4. Setup configurations.

clock 2L cache I/O bus Myrinet FM FM packet
Platform (Mhz) (Kbytes) (Mhz) adapter release size (bytes)

SPARC/Solaris 167 512 SBus (25) M2F-SBus 32C 2.0 1024
Pentium II/Linux 450 512 PCI (33) M2F-PCI 32C 2.0 1024
Pentium II/WinNT 450 512 PCI (33) M2F-PCI 32C 2.1 1536

3.3 Microbenchmarks and Experimental Setup

In order to assess the VIRTUS performance, we used two microbenchmarks to
measure the one-way latency and the sustained bandwidth. Repeating those
measures on different platforms and comparing them with the performance of
FM and MPI-FM, we can evaluate the overhead introduced in the each ver-
sion of VIRTUS we developed, including the one supporting derived data types
(section 4).

The one-way latency is measured using a simple ping-pong program. The
time needed to complete N round trips between two machines is taken and
divided by 2N . The bandwidth is measured sending a continuous sequence of N
messages and stopping the timer when the last message is acknowledged. The
measured time is then divided by the number of bytes sent (figure 1-a). In this
way we are sure that all sent data have been received and no bottlenecks in
the communication subsystem can be hidden by intermediate buffering. Even
though this test can underestimate the actual bandwidth, the error introduced
is small for large N .

For our experiments, we used three different platforms: a Myrinet cluster of
SUN Ultra 1 running Solaris 2.6, and a Myrinet cluster of dual-Pentium running
Linux and Windows NT 4 (WinNT). The hardware and software characteristics
of the platforms are reported in table 4.

The main differences among the platforms affecting the results presented in
the next sections, concern the I/O bus and the implementation of the FM library.
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The SBus of the SPARC/Solaris platform has a DMA and Programmed I/O
peak bandwidths of approximately 80 and 40 Mbytes/s, respectively. The only
version of FM available on this platform is the release 2.0 of the library, which
does not support multiple processes on the same host.

The PCI bus of the Pentium-based cluster has a measured peak bandwidth
larger than 100 Mbytes/s for both DMA and Programmed I/O. In the latter case,
however, this limit can be attained only if the adapter’s memory is mapped to
virtual addresses for which the Write Combine (WC) facility of the Pentium
processor is enabled. The FM distribution for WinNT we used includes a special
Myrinet driver which enables this feature, which implies that the full potential
of the PCI can be exploited. This version has also an FM packet size larger than
the other ones. In the Linux case, since the distribution of FM that includes
write combine support does not run on our Linux installation, we used a version
of FM we derived from the version running under Solaris. This version does
not contain WC support, and this limits the peak bandwidth of the I/O bus
at about 45 Mbytes/s. Comparing the measures carried out on the Linux and
WinNT platforms can therefore give insight on the role of the I/O bus speed on
overall performance.

Another important characteristics of all FM implementations we used is that
they do not use a thread package to implement the handler semantics (as it is
the case for more recent distributions for WinNT), but execution interleaving is
made possible by a special transformation of the handler’s code. While highly
portable, this solution nevertheless introduces limitations on the handler code
that will be discussed in more detail in section 4.1.

3.4 Basic VIRTUS Performance

Since VIRTUS has been developed on the SPARC/Solaris platform we used the
latency and bandwidth measurements gathered on this platform to contrast the
performance of the two versions of VIRTUS and of MPI-FM, which is based on
a former ADI interface (release 1.0.8 of MPICH). We then present data gathered
on all platforms to evaluate the overhead introduced in VIRTUS 2.0 (VIRTUS
1.0 has not been ported on the Pentium platforms) with respect to the underlying
FM library.

From figure 1-b, we observe that the additional layer introduced in MPICH
1.1.x affects VIRTUS 1.0 latency. The penalty, however, is relevant only for rel-
atively short messages and it can be almost entirely attributed to the allocation
of the temporary buffer managed by the Channel implementation on the receive
side. Things improve considerably when we consider VIRTUS 2.0. In this case
the penalty is reduced to a few microseconds only for very short messages.

Coherently with this observations, the bandwidth of VIRTUS 1.0 is slightly
worse than the one of MPI-FM up to 4K messages (figure 1-c). For middle
sized messages, VIRTUS 1.0 and MPI-FM exhibit the same performance. For
large messages, the additional copy on the receive side limits the bandwidth of
VIRTUS 1.0. The penalty increases with the message size since, in the bandwidth
test, the two copies are partially overlapped with the DMA of the next message.
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Fig. 1. Basic VIRTUS performance.

Cache effects cause an increase in the memory access time which explain the
typical shape of the VIRTUS 1.0 curve.

In VIRTUS 2.0, the bandwidth of middle sized messages is notably better
than in MPI-FM (figure 1-c). Data not reported here show that this difference
disappears on other platforms were MPI-FM exhibit the same bandwidth as
VIRTUS 2.0. We have not a clear explanation for this effect which is in some
way related to the interplay between the different ADI implementations and I/O
bus speeds in the three platforms.
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Table 5. 0-byte latency (all platforms).

Platform FM VIRTUS

SPARC/Solaris 35.4 42.8
Pentium II/Linux 14.0 17.0
Pentium II/WinNT 8.9 16.9

Figures 1-d, 1-e, and 1-f compare the bandwidth of VIRTUS 2.0 and FM on
the three platforms. Peak performance of VIRTUS and FM are the same on all
platforms.

On the SPARC/Solaris and Pentium II/Linux platforms, the bandwidth of
VIRTUS for middle sized messages (up to 32 Kbytes) is notably lower than the
one of FM. This is mainly due to the presence of a 16 byte header that requires
the transmission of an additional (almost empty) packet in the VIRTUS case
when payload length is a multiple of the FM packet size. Note that the additional
packet, besides wasting bandwidth, also increases the overhead due to the flow
control protocol. As expected the effect is limited to small multiples of the packet
size. The slope change observed in the VIRTUS curve at 512 bytes is due to the
protocol change at the sender mentioned above.

On the WinNT platform, cache effects limit the VIRTUS performance for
very large messages. We have not a certain explanation for this behavior, but the
same bandwidth drop can be observed also in the MPI-FM implementation on
WinNT (not shown here). The drop probably depends on cache effects depending
on the greater locality of the handler’s code and data structures in the FM case
(see also the comment on latency). Also the bandwidth loss for 2 Kbytes messages
is typical of FM on the WinNT platform; it is due to a steep bandwidth decrease
at the first packet boundary. Note that the bandwidth decrease due to the 16
byte header is not apparent in these curves because on the one hand it is partially
hidden by the previous effect, and on the other hand the points of the plot do
not coincide with multiples of the FM packet length.

As to latency (table 5), we first note that the relatively high latencies mea-
sured on the Solaris and Linux platforms are due to the FM packet length which
is large with respect to the I/O bus speed. We then observe that on all platforms
the difference between VIRTUS and FM is limited. It can be explained with the
higher level of the VIRTUS library, which introduces more protocol overhead,
and with the presence of a message header in VIRTUS. The cause of the larger
difference observed in the WinNT case can be explained again by the greater
locality of the handler’s code and data structures in the FM case.

4 Adding Derived Data Types Support

4.1 Implementation Details

In MPICH a derived data type (ddt) consists of a descriptor containing all the
information needed to manage the type. If the ddt is not a primitive type, the
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descriptor is a linked structure containing pointers to the component types’
descriptors.

In the ADI-2 layer, there are specialized operations for sending and receiving
ddts. Their default implementation uses an additional temporary buffer where
the ddt is linearized by traversing its descriptor through a recursive algorithm.
This leads to a 1-copy protocol on the send side,and a 2 or 3-copy protocol on
the receive side, depending if messages are expected or unexpected, respectively.

To avoid these additional copies, we modified the ADI-2 implementation of
the specialized operations leading to version 3.0 of VIRTUS.

On the send side, we added a modified version of the recursive traversing
algorithm which calls the FM send piece primitive, in place of a copy routine,
each time it finds the descriptor of a contiguous piece of data to be sent. In this
way, data are directly copied from the noncontiguous send buffer provided by
the application to the adapter’s send queue through the I/O bus.

To achieve a similar behavior on the receive side, a modified version of the
traversing algorithm has to be embedded into the FM handler. When the con-
trol part of a message containing a ddt is extracted from the network and the
receive buffer has been already posted (i.e. the message is expected), the handler
traverses the ddt descriptor and it calls the FM receive primitive each time it
finds the descriptor of a contiguous piece of data to be received. In this way, data
are directly extracted and copied to the noncontiguous receive buffer provided
by the application.

This solution, however, presents a technical problem due to the versions of
FM we used. The technique used in both versions to implement the handler
semantics forbids calling any subprogram which calls in turn the FM receive
primitive. Since this would be the case if a recursive version of the traversing
algorithm were used, the only way to implement the solution outlined above is
to use an iterative version of the algorithm, whose code can be embedded in the
handler code without any subprogram calls.

We therefore rewrote the traversing algorithm in iterative form, using a dy-
namically allocated linked list of activation records to implement the recursion
stack. The corresponding code, is executed by the handler on receiving expected
messages containing a ddt.

In case the message containing a ddt is unexpected, a temporary contiguous
buffer must be allocated and data can be extracted from the network with a single
call to the FM receive primitive. When the noncontiguous buffer is eventually
posted by the application, data are copied using the original recursive version of
the traversing algorithm.

Once more, the effort to add non-contiguous data support was very limited.
The new code is contained almost entirely in the fmpriv.c file (487 additional
code lines basically implementing the traversal algorithms for sending and re-
ceiving general datatypes) and in a new file called fmddt.c (280 code lines). We
also slightly modified four ADI-2 files (adi2init.c, adi2hsend.c, adi2hrecv.c,
chinit.c) to retain the possibility of using multiple devices on heterogeneous
systems.
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4.2 Performance Analysis

VIRTUS 3.0 was initially developed, as previous versions, on the SPARC/Solaris
platform and then ported on the Pentium II/Linux and Pentium II/WinNT
platforms. Since the behavior of the library on the SPARC/Solaris and on the
Pentium II/Linux is very similar and the absolute performance on the latter
platform is slightly better, for the sake of brevity, we limit discussion here to
the results gathered on the two Pentium-based platforms, which differ mainly
for the I/O bus speed on the send side (see section 3.3).

In all cases we discuss only the results of the bandwidth test, which seems
by far the most interesting. The tests were carried out by using a 2D strided
array as a ddt. The array stride was twice the inner blocksize which was varied
from 128 bytes to several Kbytes. In each graph we report for comparison the
bandwidth of the contiguous case and of the ddt case with inner blocksize of 128,
1024 and 8192 bytes, respectively. Moreover, in order to analyze the behavior of
either communication side, we instrumented the library so that ddt support can
be disabled selectively.

The bandwidth of VIRTUS on the Linux platform when ddt support is dis-
abled on both communication sides is reported in figure 2-a. In these conditions,
the original MPICH protocol is used. The graphs show that additional copies on
both communication sides remarkably affect the peak bandwidth, even though,
on this platform, the low speed of the I/O bus on the send side. For messages
larger than 120 Kbytes, bandwidth drops due to cache effects on the 2-copy pro-
tocol, which causes the receiver host to become the bottleneck. Figure 2-a also
show that the overhead introduced by traversing of the ddt descriptor affects
bandwidth for small inner blocksizes.

The situation changes when ddt support is enabled (2-b). Peak bandwidth in
the ddt case is virtually the same as in the continuous case. Tests with ddt sup-
port enabled on just one side confirm that both sides are potential bottlenecks.
Again, a small inner blocksize introduces some overhead which slightly reduces
the peak bandwidth.

Comparing the shapes of the ddt curves in figures 2-a and 2-b, it is worth
noting the absence of a bandwidth drop for long messages. Since the handler ex-
tracts packets from the pinned-down area in parallel with the network transfers,
when ddt support is enabled, the copy of received data to the final noncontigu-
ous buffer is completely hidden by the relatively low speed at which data are
injected into the network on the send side.

The latter observation induced us to port VIRTUS 3.0 on the WinNT plat-
form where the bottleneck on the send side is removed. The results of this ex-
periment are reported in figures 2-c and 2-d.

The introduction of ddt support has essentially the same final effect as in the
Linux case, leading to the same bandwidth for the ddt and the contiguous case.

This time, however, the relative weights of the several potential bottlenecks
are different. First, the performance penalty of the original MPICH protocol is
much higher (2-c). Second, the main bottleneck is always the protocol on the
receive side, which is responsible also of the poor performance of the ddt support
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Fig. 2. Derived data types communication performance (bandwidth).

for inner blocksizes smaller than 1 Kbytes (2-d). This conclusion is confirmed by
the results reported in figure 2-e, where six different protocol combinations are
contrasted (fixing the inner blocksize to 128 bytes).

The first curve corresponds to enabling ddt support on both sides (full sup-
port) and it is the same reported in figure 2-d. The second and third curves
correspond to enabling ddt support only on either the send (support on send) or
the receive side (support on receive), respectively. They expose the overhead of
the additional copies on the other side. The fourth and fifth curves correspond
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to using a non contiguous buffer with ddt support only on either the send (con-
tiguous on recv) or the receive (contiguous on send) side, respectively, whereas
a contiguous buffer (i.e. a primitive data type) is used on the other side. They
expose the overhead of the protocol used to support efficient ddt communication.
The last curve (contiguous) corresponds to use contiguous data on both sides
and it is reported as a reference.

When a contiguous buffer is used on the receive side the overhead of the re-
cursive traversing algorithm executed on the send side is minimal (curve labeled
contiguous on recv). This result seems to indicate that the main cause of the
poor performance attainable when the blocksize is small is the overhead intro-
duced by the iterative implementation of the traversing algorithm. Indeed, there
are at least two sources of overhead that we could not eliminate for lack of time.
The first source is the absence of an optimization for regular non-contiguous
data structures (i.e. data structures with fixed stride, such as those used for
our tests) which is present in the recursive version of the algorithm, but it is
not straightforward to introduce in the iterative version. The second source is
dynamic allocation of activation records to emulate the recursion stack which
makes expensive the treatment of small blocks. We believe that both sources
of overhead can be easily removed. Alternatively, we can employ the recursive
version of the algorithm on the receive side also, by using the most recent imple-
mentation of FM under WinNT which allows the handler to call subprograms
without limitations. The latter solution, however, would not be easily portable
to other platforms.

5 Discussion and Related Work

Several efficient implementations of MPI exist on both MPPs [7] and clusters [11],
including some that use recent versions of the MPICH library [2]. All these im-
plementations achieve remarkable performance and demonstrate that the design
of the MPI standard and of its probably most popular public domain implemen-
tation, MPICH, succeeded in attaining both high efficiency and wide portability.
Our own porting of MPICH on the FM platform attain at least the same per-
formance levels on a variety of software/hardware platforms.

To our knowledge however, most of these implementations do not deal with
the issue of efficient communication of noncontiguous data structures. As a mat-
ter of fact, the only reported experience on this issue we are aware concern
the proprietary IBM implementation of MPI for the SP platform [7]. Our work
demonstrates that the same qualitative behavior (same performance for con-
tiguous and noncontiguous data structures) can be obtained in a less expensive
cluster environment. This result is important because general datatypes can be
profitably exploited in MPI applications to improve the readability and man-
ageability of the code, and the flexibility of the implementation. The use of
non-contiguous data would be clearly discouraged if it introduced a significant
bandwidth penalty. Two other examples of the need to send/receive a large
amount of non-contiguous data are some collective communication algorithms
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and global exchanges used in parallel I/O libaries, including MPI-2. Finally, com-
munication of non-contiguous data seem increasingly important in distributed,
object-based, platform-independent programming environments, where data are
commonly represented by data structures even more general than MPI ddts.
Although the work reported in this paper does not directly address the latter
issue, our experience and performance data we reported can help in providing
efficient communication support to these environments.

We also explored two more issues not explicitly covered and/or supported
with extensive quantitative data by previous work. First, we have confirmed in
a different context the results of [11], namely that the distinctive features of the
Fast Messages library offer a very flexible basis for efficient implementation of
higher level interfaces. Second, we have reported experience on using the different
alternatives offered by the MPICH internal structure for porting the library to
new platforms. Our experimental results show that even a quick porting to the
channel interface can attain a performance comparable with more sophisticated
implementations.

6 Conclusions

In this paper we have reported our experience in developing the core of VIRTUS,
a platform for high performance computing on workstation clusters. We focused
on the communication part of the system which uses the MPI standard and
provides support for efficient communication of noncontiguous data structures.
The system runs on three different platforms exhibiting high portability and
competitive performance in a variety of conditions. The extensive experimental
data we reported in the paper help in analyzing and understanding potential
sources of overhead in the communication software and confirm the effectiveness
of the approach followed.

Future work include further development of VIRTUS, especially for what is
concerned with parallel I/O on clusters, and its interaction with high perfor-
mance communication so that full available I/O bandwidth can be made acces-
sible to all computing nodes.
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Abstract. In this paper, we present algorithms for efficiently implementing
three collective communication operations on reflective memory network
clusters: Broadcast, Barrier Synchronization and All-Reduce. These
algorithms have been implemented as an extension to the Bill-Board Protocol,
a low-latency communication protocol for reflective memory networks that
we previously developed [6,7].  Simulated performance results are presented
for these algorithms.  The performance of the algorithms is evaluated in detail.
A comparative study with Myrinet, a popular point-to-point switched
interconnect for clusters is also presented.

1 Introduction

In recent years, clusters of workstations have become a popular platform for high-
performance computing [1,2].  Clusters typically use commodity networks for intra-
cluster communication.  Performance of applications running on these clusters
directly depends upon the performance of the interconnecting network.  Point-to-
Point networks such as Myrinet [3], switched Ethernet, and ATM have become
popular interconnects for clusters.  Though these networks provide high bandwidth,
delivering low latencies and providing good communication and computation
overlap is a non-trivial problem.  Consequently, a lot of research has been done on
finding solutions for these problems [4,5,16,17].

Recently, there has been interest in the research community in applying other
types of networks to cluster computing, such as reflective memory networks [8].
Reflective memory networks provide a limited amount of shared memory across a
cluster of workstations.  Each workstation is equipped with a network interface card
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(NIC) which possesses a memory bank.  Memory on the NICs is not physically
shared but updates to a location on any one of the NICs are transmitted to the other
NICs on the network.  This causes the memory at each NIC in each workstation to
be a reflection of the memory on the other NICs.

Reflective memory networks have some unique features.  The most important
feature is that communication is abstracted to memory reads and writes.  No
operating system intervention is required for communication.  Once a message is
written to the NIC, the host processor can resume computation.  In addition,
latencies are predictable.  This is especially important for some applications, such as
real-time applications.  Finally, the inherent broadcast nature of reflective memory
networks makes them ideal for implementing some frequently used collective
operations, which are useful in many parallel and distributed applications.

In this paper, we develop algorithms for efficiently implementing three collective
communication operations on reflective memory networks: Broadcast, Barrier
Synchronization, and All-Reduce.  These algorithms have been implemented as
extensions to the BillBoard protocol (BBP) [6,7], a low latency communication
protocol for reflective memory networks that we have previously developed.  We
have developed an analytical model of reflective memory networks, which is used to
evaluate these algorithms.

The paper is organized as follows: The next section gives a broad overview of
reflective memory networks.  Section 3 describes the algorithms.  Section 4
describes the analytical modeling of the algorithms for reflective memory networks.
Section 5 presents performance evaluation results.  Section 6 presents our
conclusions.

2 An Overview of Reflective Memory Systems

A Reflective Memory (RM) network provides a limited amount of shared memory
across a cluster.  There are many reflective memory networks available today.
SCRAMNet [11] from Systran, RTNet [12] from VMIC and DEC MemoryChannel
[13] are popular reflective memory products.  VMMC [14] from Princeton and
Merlin and Sesame [15] from Sandia Labs and SUNY, Stony Brook, are research
projects involving reflective memory.  A detailed survey of existing RM networks is
presented in [8].

The most common application of RM networks has been for Real time Systems.
They have been used in aircraft simulators, telemetry, and robotics.  They have also
been applied to distributed applications such as on-line transaction processing
(OLTP) and client-server computing, as well as parallel computing applications.

The basic operation of any reflective memory network is as follows.  Each node
on the network has a memory bank (normally residing on the NIC). The memory
bank is mapped to the address space of the processes using the reflective memory.
When a process writes to a location in its virtual address space that maps to the
reflective memory bank, the RM system propagates that write to every other node in
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the network.  The propagation of the update happens asynchronously, and without
intervention of the application process.  When a process reads from a location in the
shared area of memory, no communication is required to the other nodes, because
any updates to that location by other nodes would have been automatically sent
when writes occur.

There is no software protocol overhead for communication in RM networks as it
is handled by the hardware.  Consequently, communication latencies are very low.
Since communication is abstracted to memory loads and stores, the host processor is
freed from communication processing overhead, and applications can achieve good
overlap between computation and communication. However, the performance of any
RM network is limited by the amount of memory on each NIC, and the bandwidth of
the underlying interconnect.  The greater the amount of memory on each NIC, and
greater the bandwidth of the network, the better its performance delivered by the
system.

The Bill-Board Protocol (BBP) is a low-latency message passing protocol for RM
networks that we have previously developed.  With a little software overhead, it
provides basic message passing functionality over an RM network.  The BBP is
described in detail in [6].  A brief description is given below.

The BBP is a lock-free protocol providing basic send/receive and multicast
services.  In the BBP, the shared memory on the RM network is split into two areas:
a control area and a message area.  Each area is equally divided into N partitions for
N node s  on the  ne twork.  Each node’s  messa ge  partition is  use d for message  buffe rs .
Each node ’s  control partition conta ins  fla gs , which control the  actua l transfer of
message s .  For each source , a  node  has  a s  many “Me ssa ge” flags  as  the re  a re  buffe rs
in the  me ssa ge  partition of the  source .  For each de s tina tion, a  node  ha s  as  many
“Ack” flags  as  it has  buffe rs .  There  exis ts  a  unique  messa ge  flag a nd a  unique  ack
flag for every (source , des tina tion, buffe r) triple .

To se nd a  message , a  node  a lloca tes  a  buffe r in its  messa ge  partition, writes  the
message  to the  buffe r and the n toggles  the  messa ge  flag for tha t buffe r and
des tina tion.  Every node  polls  its  se t of message  fla gs  to check for incoming
message s .  A cha nge  in s ta te  in a  messa ge  fla g indica te s  the  a rriva l of a  new
message .  To rece ive  this  message , the  de s tina tion node  reads  the  messa ge  from the
source’s  messa ge  partition.  It the n and toggle s  the  ack flag corresponding to the
message  buffe r in the  control partition of the  source .  This  indica tes  tha t the  buffe r is
now free  for further use  by the  source .  In order to multicas t a  messa ge , the  se nder
s imply se ts  messa ge  flags  for multiple  rece ivers .  In the  BBP, a ll writes  to shared
memory by a  node  appear in the  same order a t other node s  as  they were  writte n.
S ince  the  messa ge  is  a lways  writte n before  the  flags  a re  se t, there  is  no da nger of a
node  noticing a  cha nge  in fla g s ta te  be fore  the  corresponding message  has  been
written to its  copy of the  shared memory.

In this  pa per, we  prese nt pe rformance  of the  propose d a lgorithms over one
particula r ne twork, i.e . SCRAMNet, as  impleme nte d in the  BBP.  In a ddition, we
deve lop an a na lytica l mode l of RM ne tworks , which is  representa tive  of current day
technology.  Performa nce  of the  propose d a lgorithms has  been e va lua ted for the
mode le d RM ne twork.
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3 Collective Communication Algorithms for Reflective Memory
Networks

Algorithms for three collective communication operations are described here:
Broadcast, Barrier Synchronization, and All-Reduce.  These operations were chosen
because a broadcast of information occurs in each one of these, and therefore they
are good candidates for using the inherent broadcast nature of reflective memory
networks.

3.1 Broadcast

In a broadcast, one process sends the same message to more than one node.  Many
algorithms have been proposed for accomplishing a broadcast.  These solutions
typically involve a number of point-to-point messages. Such solutions, if used over a
broadcast network, involve the same message being broadcast multiple times.  An
efficient solution for a broadcast network should make use of the broadcast nature of
the network.

One such solution is the single copy algorithm in the original BBP
implementation [6].  The sender copies the message once, to a buffer in the
reflective memory.  Then, the sender sets message flags for all the receivers.  The
receivers poll on their flags.  When a flag changes state, indicating a newly arrived
message, receivers read the message from the shared memory.  The advantage of
this approach is that a message can be sent to more than one recipient and the
overhead for multiple receivers is independent of the message length.  However, as
the number of recipients increases, the overhead for setting flags increases linearly.

Solutions with O(log(N)) time complexity exist for broadcast on point-to-point
networks. The Binomial tree algorithm is an O(log(N)) broadcast algorithm [18].
This algorithm requires log2(N) steps for N participating nodes. In each step, a node
that has already received the message forwards it to a node that has not received it
yet.  Initially, only the sender has the message.  The sender sends it to one other
node, starting the broadcast.  In the next step, two nodes have the message and they
send it to two more.  In this manner, at each step the number of nodes which have
received the message doubles.  The binomial tree algorithm has been shown to be
optimal for point-to-point networks of homogenous nodes [18].  However, the entire
message is transmitted multiple times in this algorithm.  Therefore, it is not the best
suited for RM networks.

We propose a new broadcast algorithm for RM networks, which combines the
advantages of both the single copy algorithm as well as the binomial tree algorithm.
In this algorithm, message arrival notifications (change in flag state) are distributed
hierarchically.  The sender writes the message to a location in shared memory only
once.  Then it sets message flags for the first r recipients.  Each of these r recipients
sets flags for r more recipients.  In this way, a tree of depth logr(N) is built for
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setting message flags, with the sender at the root.  In logr(N)  steps, all the recipients
are notified of the arrival of the broadcast message.

This algorithm allows better concurrency in the setting of flags than the single
copy algorithm.  Since the same number of flags is being set, there is no increase in
network usage.  As in the single copy scheme, for a fixed system size, the time taken
to complete the broadcast increases linearly with message size.  In addition, the
overhead for setting flags increases logarithmically with system size.  Therefore, for
a fixed message length, the time taken to complete the broadcast increases O(log(N))
with the number of nodes. It is to be noted that the time taken not only depends on
N, the number of nodes, but also r, the ordinality of the tree used for distributing the
notifications.  For a specific system, this parameter has to be tuned, in order to
determine the value of r that will give the best performance. We study the impact of
r on broadcast time in section 5.

3.2 Barrier Synchronization

In Barrier Synchronization, N processes synchronize at a point called the barrier.
When a process crosses that point, it is guaranteed that every other process has
reached that point.  It is a special case of phase synchronization as defined in [10].

The original implementation of BBP [6,7] used a naive algorithm.  In this
implementation, there is one designated process, called the root.  Each process sends
a message to the root on arriving at the barrier.  The root, on reaching the barrier,
waits for messages from every other node, and then broadcasts a message to all
nodes notifying them that the barrier has been completed.  This algorithm does not
make efficient use of the broadcast nature of the network.  The time required to
complete the barrier grows linearly with the number of participating nodes.

Consider the following scheme, which is similar to the solution in [10].  Each
process sets a unique flag on the shared memory and then polls on the entire set of
flags to see if all of them are set.  For small system sizes, this method is extremely
fast.  However, as the system size increases, the number of flags to be polled
increases linearly.

For better scalability, we use a hierarchical scheme.  Given below is a
hierarchical algorithm for barrier synchronization on RM networks.  The N nodes
are split into groups of r each where Nr ≤ . Each group synchronizes itself by the
above method.  Then, one node is selected from each group, and a barrier is
performed on this set of nodes.  This process is repeated recursively until there are r
or fewer nodes left.  When these nodes synchronize, the barrier is complete.  When
the final round of synchronization completes, one node is selected to set a flag,
which marks the completion of the barrier.  All other nodes poll on this flag while
waiting for the barrier to complete.

This algorithm takes logr(N) steps to complete. At any step, the maximum
number of flags to be polled is r.  Again, as in the case of the hierarchical broadcast
algorithm, the performance of the algorithm depends on the value of r.  The impact
or r on the barrier time is studied in section 5.
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3.3 All-Reduce

In an All-Reduce operation, each process has an array of elements.  The result
required is an associative operation on all the arrays.  Each process should have the
result array at the end of the all-reduce.

Several algorithms have been suggested for the all-reduce operation on point-to-
point networks, such as the ring algorithm and the hypercube algorithm proposed in
[19].

In the ring algorithm, nodes are arranged in a logical ring.  In N successive steps,
each node receives an array from the node logically to its left and sends an array to
the node logically to its right.  In the first step, each node sends its own array to the
node on its right. In subsequent steps, it forwards arrays from other nodes that were
received in previous steps from the node on the left.  At the end of N such steps,
each node has all the arrays and can independently compute the result.  The ring
algorithm is essentially an all-to-all broadcast, followed by  computation of the
result.

In the hypercube algorithm, there are log2(N) steps. In the first step, pairs of
nodes exchange their respective arrays and compute partial results.  The partial
results are exchanged in the following step.  In each step, a node exchanges its
partial results with a different node and at the end of log2(N) steps, each has the
complete  result.

The ring and hypercube algorithms move O(MN2) and O(MNlog(N)) data if used
over a point-to-point network, where M is the size of one array. An all-reduce can
also be accomplished by a reduce operation to one node (using an inverted binomial
tree) followed by a binomial tree broadcast of the computed result.  In this case, only
O(MN) data need be moved. However, this advantage is lost when used over a
broadcast network. Our initial implementation of the reduce-broadcast algorithm
over RM networks showed poor results.

Presented below is a better solution for RM networks.  Each node simultaneously
broadcasts its array to all others; waits for the arrays from the others and then
independently computes the result.  The broadcast itself can be done using the
hierarchical broadcast algorithm or the single copy algorithm described in section
3.1.  In either case, the number of flags that each node sets is the same.  To reduce
contention on the network during the setting of message flags, each node sets them
in a different order.  A node takes its destination set (which is all the nodes except
itself) and starts from the node logically next to it in rank order, that is, node i will
first send to node (i+1) mod N.  This also means that it will receive notifications in
reverse rank order starting from (i-1) mod N.
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4 Modeling Collective Communication Algorithms for
Reflective Memory Networks

The algorithms presented in this paper were implemented and tested on a 4-node
SCRAMNet cluster of Pentium PCs.2  We developed an analytical model of a
reflective memory network in which we could choose parameters such as network
bandwidth, I/O bus read and write times which are representative of current RM
networks and systems.  The model has been evaluated for correctness, by comparing
timings measured for the algorithms presented in this paper on the testbed with
timing values generated using the model.  Section 5 presents a comparison of
measured and modeled timings.  It can be observed that modeled timings track our
measurements closely.

Since considerable variation exists in RM networks available today, we have
attempted to pick some common features of RM networks for use in the model.  We
have chosen the register insertion ring topology [9] and serial links used in
SCRAMNet and RTNet.  We have modeled a non-coherent RM network.  The
granularity of sharing was chosen to be one word.  This modeled network will be
re fe rred to as  the  “RM model ne twork”.

A regis te r inse rtion ring [9] is  a  more  sophis tica te d form of a  s lotte d ring.  In a
regis te r inse rtion ring, NICs have  two shift regis te rs : a  ring shift re gis te r a nd a n
input shift re gis te r.  Tra ffic from the  ring e nte rs  the  ring shift regis te r.  Upda tes  from
the  hos t ente r the  input shift regis te r.  The  NIC switche s  be tween the  two shift
regis te rs  to transmit da ta  onto the  ring.  If there  is  da ta  in the  ring shift regis te r, it is
a lways  tra nsmitted before  any da ta  in the  input regis te r.  Da ta  in the  input regis te r is
que ue d in a  FIFO, so tha t the  hos t can make  multiple  write s  eve n if the re  is  tra ffic on
the  ne twork.  The  hos t blocks  on write s  to share d memory if the  FIFO is  full.

It is  importa nt to model performance  of the  I/O Bus  a s  well as  the  underlying
ne twork because  access  time s  to the  shared memory de pe nd on the  performance  of
the  I/O bus .  In order to mode l the  I/O bus , we  measured the  performance  of the  PCI
bus  on a  300 MHz Pe ntium II PC with the  Inte l 440 FX PCI chipse t.  Access  times
for reads  and write s  tend to be  asymmetric on the  PCI bus , so we  measure d read
times  as  well as  write  times .  We have  chosen to model the  PCI bus  as  it is  wide ly
use d.

The  following a re  the  major pa ramete rs  in the  mode l tha t can be  tune d according
to the  characte ris tics  of the  ne twork be ing mode le d: ring s lot time , I/O bus  rea d
la tency, and I/O bus  write  la tency.  The  ring s lot time  is  the  time  tha t e la pses
be twee n two succe ss ive  transmiss ion s lots  on the  ring.  It depe nds  on the  ne twork
bandwidth and link width.  The  read a nd write  la tencies  a re  the  time s  required for a
minimum s ize  read or a  write .
                                                          

2 Our experimental testbed was originally configured with 8 nodes.  However, four of the NICs are
not currently functional, and we were unable to obtain replacements by the time this paper went to print.
We will be generating experimental results for an 8-node system as soon as replacements arrive and we
will make these results available on the web.



www.manaraa.com

Fast Collective Communication Algorithms for Network Clusters107

The slot time for SCRAMNet was measured to be 571 ns in our cluster,
corresponding to a network bandwidth of 7 MB/s. We use a slot time of 58 ns for the
RM model network, assuming serial links, which corresponds to a network
bandwidth of 70 MB/s.  This bandwidth was chosen because it is representative of
current RM networks.  VMIC RTNet, for instance, uses a serial link and has a
bandwidth of 69.5 MB/s [12]. PCI read and write latencies measured for the Intel
440 FX chipset with the SCRAMNet NIC were used in the model.  These were
measured to be 950 ns and 330 ns respectively.

The time taken for any communication operation can be split into message-length
independent processing overhead time and message length dependent message
copying and transmission time.  From the implementation of that operation, it is
possible to determine how these individual components overlap.  A message can be
viewed as going through a number of pipelined stages such as copy from sender host
memory to sender NIC, transmission from sender NIC to receiver NIC, and
transmission from receiver NIC to receiver host memory. The time taken for any
pipelined process is determined by the slowest pipeline stage.  The time taken for a
communication operation through a pipeline is given by the time spent by the sum of
the time spent by entire message in the longest pipeline stage and the latencies of the
other pipeline stages.  For SCRAMNet, the transmission over the network turns out
to be the slowest pipeline stage.  In the RM model network, the I/O bus is the
slowest pipeline stage

For each algorithm presented in this paper, we have determined the time spent in
individual stages and derived a mathematical equation to estimate time for each
operation.  The model is simplistic.  No background traffic has been modeled, and
all times are for best case scenarios.

Given below are the equations used to estimate times for the RM model network.
Equation (4.1) gives the time taken by the hierarchical broadcast algorithm.  It
measures the time taken from the source node initiating the broadcast to the last
node receiving the message.
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where Tflag_read  is the time taken to read a flag from the   NIC, Tflag_write  is the time
taken to write a flag to the NIC, TPCI_write  is the time taken to write a word to the
NIC, TPCI_read (W) is the time taken to read W words from the NIC, Ts  is the slot
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time, Toverhead  is the message length independent processing time, and W is the
length of the message in words.

Eq. (4.1) breaks down the broadcast time into the summation of a number of
smaller components.  Each intermediate node in the tree must first receive a flag
from its parent before it can set flags for its children.  Since an intermediate node
can set flags for its children only after its parent has set its own message flag, the
time spent in reading the flag cannot be masked.  The cost of reading one message
flag is incurred at every level of the tree. The first component is the time spent by
intermediate nodes in the tree reading message flags.  The second and third
components together give the cost of setting flags.  The second component is the
time spent at the lowest level of the tree setting message flags The third component
is the time spent at intermediate nodes setting message flags, which cannot be
masked by pipelining.  The fourth component is the propagation delay for the
message itself.  The fifth and sixth components are PCI write and read latencies.
When the message is being written, the propagation starts in parallel.  However, the
entire message must be received at the NIC before it can be read.  So, the entire time
spent in reading the message over the PCI bus cannot be masked.  This is why only
the time for one PCI write is counted whereas the time for reading the entire
message over the PCI bus is counted.  The seventh component is the fixed message-
length independent software overhead time spent at the source for such tasks as
memory allocation for the message buffer.

Eq. (4.2) gives the time taken to complete a barrier using the hierarchical barrier
algorithm.
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where Tflag_read  is the time taken to read a flag from the   NIC, TPCI_write  is the time
taken to write a word to the NIC, Ts  is the slot time, and Nring is the total number of
nodes on the ring.

The time taken for a barrier is given by the product of time spent at each step and
the number of steps.  There are logr(N) steps. At each step, a node writes a flag, then
reads (r-1) flags. There is a propagation delay between the write and the reads.  The
three components in the parentheses correspond to flag read time, flag write time
and propagation delay respectively.

Eq. (4.3) gives the time taken to complete an all-reduce using the simultaneous
broadcast algorithm.
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where  Tflag_write is the time taken to write a flag, TPCI_write  is the time taken to write a
word to the NIC, TPCI_read (W) is the time taken to read W words from the NIC, Ts  is
the slot time, and Toverhead  is the message length independent processing time.

Eq. (4.3) breaks down the time taken for an all-reduce into the summation of 5
components.  In an all-reduce, all nodes simultaneously write their arrays to the
shared memory, then set N-1 flags, and then read N-1 arrays.  The first two
components in eq. (4.3) are the time spent writing the message. The first component
is the time spent writing the first word t over PCI which cannot be masked.  The
second component is the propagation delay. Note that the propagation delay in this
case is greater than that in case of a single broadcast.  The third component is the
time spent in setting flags for all the broadcasts. Each node sets N-1 flags.  The
fourth component is the time spent reading the arrays over the I/O bus.  The fifth
component is the message-length independent software processing overhead time.

5 Performance Evaluation

The three algorithms described in the preceding section have been implemented and
incorporated into the BBP.  Their performance was evaluated on a 4-node
SCRAMNet Cluster of 300 MHz Pentium II workstations.  These experimental
results were used to validate the analytical model discussed above.

For comparison, we also measured the time taken for equivalent operations on
MPIFM on Myrinet on the same cluster.  Myrinet is a 1Gb/s point-to-point network
which is a popular interconnect used for clustered systems.  MPIFM is the most
popular communications software that provides collective communication support
on Myrinet. FM [4], the communication layer on top of which MPIFM is built, is at
the same layer as BBP.  FM does not provide any collective communication support.
In addition, MPIFM adds only a little overhead to FM. Therefore we have chosen
MPIFM for our comparison.

For each operation, the following results are presented.  First, for a 4-node
system, measured results are presented for SCRAMNet and MPIFM/Myrinet.  These
are  labe led “SCRAMNet (Measured)” a nd “MPIFM (Measured)” respective ly in the
figures .  Es timated time s  for SCRAMNe t us ing the  mode l and paramete rs  for
SCRAMNet a re  a lso prese nted.  These  a re  la be led “SCRAMNet (Mode led)”.  The
purpose  of presenting both numbers  is  to check for va lidity of the  mode l.  S imula te d
results  for the  RM model ne twork a re  a lso prese nte d.  These  were  ca lcula ted us ing
equa tions    (4.1)-(4.3) a nd paramete rs  for the  RM model as  described in section 4.
These  results  a re  la be led “RM (Modele d)”.  S imula te d results  for each opera tion a re
a lso prese nted for bigger sys tem s izes .  MPIFM use s  well-known a lgorithms for the
three  opera tions  under s tudy. These  have  bee n impleme nted on top of point-to-point
message s .  We measured times  ta ke n for point-to-point messa ges  a nd use d them to
compute  the  time  take n for collective  opera tions  for la rger sys tem s izes .  These
results  a re  labe le d “MPIFM (Modele d)” in the  figures .
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Figures 1, 2 and 3 show the performance of broadcast.  Fig. 1 compares measured
values of broadcast timings for MPIFM and SCRAMNet, and the RM model for a 4-
node system with varying message length and r=4.  It can be noted that the modeled
values for SCRAMNet are very close to actual measured values.  Since Myrinet has
the highest bandwidth, it has the lowest slope, but it has higher latency.  Hence, for
short messages SCRAMNet and the RM model network do better.  Figs. 2 and 3
show the performance of broadcast for zero byte and 64 bytes for increasing system
size.  It can be observed that the performance depends on the value of r.  A value of
r=4 is the best for a 32 node system.  However, this may not be the case for larger
systems.  Figs. 2 and 3 show that in general, as the system size increases so does the
ideal value of r.
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Fig. 1. Broadcast Performance on a 4 node
system

Fig. 2. Broadcast Performance (0 byte)

Figures 4 and 5 show the performance of the Barrier algorithm.  As can be seen in
Fig. 4, the modeled performance closely tracks the actual measured performance on
SCRAMNet.  The curve marked MPIFM shows the measured performance of the
MPIFM Barrier implementation on Myrinet.  A 4-node barrier takes 32
microseconds on MPIFM and only 13.9 microseconds on BBP on SCRAMNet.  The
hierarchical barrier algorithm on the RM model network (for r=4) takes only 10.7
microseconds.

Fig. 5 shows the performance of the barrier algorithm for larger systems, up to 32
nodes and compares the performance of our algorithm on a reflective memory
network with that of the O(log(N)) scheme used in MPIFM.  Note that the
performance depends on the value of r used.  For systems up to 32 nodes, the
algorithm works best with r=4.  A trend similar to broadcast is observed here.  In
general, as system size increases so does the ideal value of r to be used in this
algorithm.
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Figures 6, 7 and 8 show the performance of the All-Reduce algorithm.  Fig. 6
shows the performance on a 4-node system.  It can be observed that for SCRAMNet,
the modeled values closely follow actual measured times.  For short message sizes,
SCRAMNet and the RM model network do better than Myrinet, but Myrinet does
better for longer messages.  Figs. 7 and 8 show the performance of All-Reduce for 4
byte and 64 byte lengths for systems larger than 4 nodes.  The same pattern is ob-
served.  For the shorter message size, SCRAMNet and the RM model network do
better.
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It can be observed that the RM model network does well for short message
lengths, the best performance being for the broadcast algorithm.  This shows that the
performance is limited by the bandwidth of the network.  Better performance can be
expected of an RM network with higher bandwidth.

Another limitation of RM networks is that the amount of memory that is shared is
limited.  The broadcast and all-reduce algorithms require O(N2) space for control
and O(M) and O(MN) space respectively for data, where M is the length of the
message.  The barrier algorithm also requires O(N) space.  The amount of shared
memory eventually determines how much any algorithm for an RM network can
scale.  However, today RM NICs are available with up to 8 MB of shared memory
[11].  Memory limitation, is therefore not a big problem for medium sized clusters.
For instance, a 64-node system, the barrier operation needs only 8 bytes and
broadcast and all-reduce need only 512 bytes for control.  The size of shared
memory does not limit the largest message length possible, as messages can be
packetized.

6 Conclusions

In this paper, we have presented algorithms for Barrier Synchronization, Broadcast,
and All-Reduce on reflective memory networks.  These algorithms have been
implemented and their performance compared with Myrinet, a high bandwidth
network commonly used in cluster computing today.  Current generation RM
networks do not have bandwidths as high as point-to-point networks.  Even with a
bandwidth disadvantage, RM networks give good performance for short messages
for the three collective communication operations studied.  Furthermore, they offer a
much simpler programming model and allow better overlap between computation
and communication than many point-to-point networks. They also offer low
latencies, which are useful for applications that exchange many short messages.  The
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two limitations of RM networks are limited memory and limited bandwidth.  RM
networks have traditionally been used for specialized applications such as real time
systems.  With higher bandwidths, RM networks can give good performance for
broadcast, barrier and all-reduce communication operations for a wider variety of
cluster computing applications.

Additional papers related to this research can be obtained from the following Web
pages: Network-Based Computing Laboratory (http://nowlab.cis.ohio-state.edu) and
Parallel Architecture and Communication Group  (http://www.cis.ohio-
state.edu/~panda/pac.html).
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Abstract. Parallel cluster computing projects use a large number of
commodity PCs to provide cost-effective computational power to run
parallel applications. Because properly load-balanced distributed paral-
lel applications tend to send messages synchronously, minimizing block-
ing is as crucial a requirement for the network fabric as are those of
high bandwidth and low latency. We consider the selection of an opti-
mal, commodity-based, interconnect network technology and topology
to provide high bandwidth, low latency, and reliable delivery. Since our
network design goal is to facilitate the performance of real applications,
we evaluated the performance of myrinet and gigabit ethernet technolo-
gies in the context of working algorithms using modeling and simulation
tools developed for this work.

1 Introduction

A group of enthusiasts of commodity high-performance computing platforms has
lived at the fringes of the computing community for many years now, and this
bunch is seeing its numbers grow following the general demise of the massively
parallel processor (MPP) manufacturers. Even the government research labo-
ratories are joining the fray. Sandia National Laboratories is a United States
Department of Energy research facility which can no longer satisfy its thirst
for FLOPS by buying monolithic multi-million dollar machines, as there is not
sufficient market demand to keep vendors in business.

The idea of cluster computing is to aggregate machine rooms full of relatively
cheap hardware, connected with some sort of network, and apply the combined
force of the individual machines on a single calculation. Problems arise, though,
in attempting to operate this set of machines as a single unit. As it is not feasible
to run a single instance of the operating system on the entire cluster, the alternate
paradigm of message passing is used instead. Each processor (which could also
be a small shared-memory multiprocessor) maintains a disjoint address space,
and messages are passed between machines as driven by the requirements of each
application.

The hardware employed in a cluster is generally the most readily available in
the volume personal computing market, so as to leverage the cost advantages of
buying commodity hardware. The down side to this is that some critical pieces

B. Falsafi and M. Lauria (Eds.): CANPC 2000, LNCS 1797, pp. 130–144, 2000.
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of hardware for cluster computing are completely irrelevant for the mass market,
namely the interconnect. The advent of shared 10 Mb/s ethernet [3] was a giant
step, and remains the basis of the standard “fast” networking infrastructure,
as it has been for the last 15 years. Within the last few years, though, the
price of 100 Mb/s ethernet cards have approached the reach of most users,
and commodity gigabit network components are on their way. High-end cluster
users can afford both gigabit ethernet and myrinet [9] as the message passing
infrastructure. More esoteric networking components, such as HiPPi [10] and
Giganet [12] are available to those willing to incur the additional costs, and are
becoming cheaper and faster with time.

The remainder of this paper discusses the technologies we simulated, and
methods we used which involve a mix of “artificial” basic tests and simulations
of core algorithms from real parallel applications. Our results tally the positive
and negative aspects of each technology.

2 Interconnect Technologies

The following three subsections describe the network fabrics we considered in
the simulations discussed in Section 3. In each section we calculate the current
pricing for a prototypical 256 node cluster, a size which should be familiar to
many cluster builders.

2.1 Myrinet

Myricom’s myrinet is a cost-effective, high-performance communication and
switching technology. It interconnects hosts and switches using 1.28 Gb/s full-
duplex links. The myrinet PCI host adapter can be programmed to interact
directly with the host processors for low-latency communications, and with the
network to send, receive, and buffer packets.

Myricom supplies open source software that runs on common hosts and op-
erating systems. This software maps the network periodically to find available
paths between communicating hosts. All myrinet packets carry a source-based
routing header to provide intermediate switches with forwarding directions.
Therefore, myrinet switches do not need to run routing algorithms or main-
tain a routing table. Because myrinet does not impose a size limitation on its
packets, it can easily encapsulate any protocol’s packet format (e.g. TCP [8],
IP, etc.), thereby providing interoperability. While the simplicity in the myrinet
switch offers a low per-port cost, it lacks management capability to maintain
robustness in large clusters.

The current myrinet switch is a 16-port crossbar, although there should soon
be available a 64-port switch. These ports can be used to interconnect either
switches or processors, thereby allowing arbitrary network topologies. Normally,
more interswitch connections implies more diverse paths, which can reduce block-
ing within the switching fabric. However, there will then be fewer ports available
to interconnect processing nodes.
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The severe cable length restriction is the greatest impediment to creating
complex topologies. Optical converters are available from Myricom, at a cost of
$3600 per connection, which would more than double the per-host connection
cost. On the small scale, one can easily build hypercubes and large-dimensional
tori using 35 foot LAN cables. For our large scale simulations, we chose a two
dimensional torus as the best tradeoff in terms of area and cost. It scales in
two physical dimensions just as our hardware scales in two dimensions on the
machine-room floor. Our plans for 10 000 compute nodes and our budget do not
permit a hypercube topology on that scale.

Myrinet sells a network interface card for $1700, 16-port switches for $5000,
and cables for $200. For the topology described above, the total cost for 256
nodes is 256× $1700 + 32 × $5000 + 12 × 32 × $200 = $670k.

2.2 Gigabit Ethernet

The most popular Local Area Network (LAN) technology is ethernet. Ethernet
has evolved from the 3 Mb/s technology, invented by Bob Metcalfe in 1973,
to the 10-, 100- (or fast), and 1000-Mb/s (or gigabit) ethernet standards of
today [7], gigabit ethernet is fast becoming a commodity item and therefore, we
believe it can be a cost-effective alternative to interconnect parallel computers.
Moreover, there are already discussions of 10- and even 100-gigabit per second
ethernet [4], which could provide the next generation parallel computers with a
smooth upgrade path to their communication subsystem.

Conventional routers, however, are not scalable because they use designs
based on a backplane bus or crossbar switch. The largest non-blocking switch
available today supports only 64 nodes, and cascading is required to build a clus-
ter beyond that size. These routers use the spanning tree algorithm to calculate
a loop-free tree that has only a single path for each destination, using the redun-
dant paths as hot stand-by links, precluding the use of, say, a mesh topology.
Without diverse paths, cascaded switches will suffer performance bottlenecks
due to output port contention.

Due to the lack of switch scalability and the necessity to remain backward
compatible with slower ethernet implementations, we believe the applications of
a conventional gigabit ethernet switch fabric are limited to small parallel systems.
We decided to conduct a simulation study of a 256-node cluster, nevertheless, in
order to evaluate the effects of ethernet’s packet framing, inter-frame gap, maxi-
mum and minimum packet size, and store-and-forward switching mechanism on
the performance of parallel applications.

Network cards for gigabit ethernet are around $700, and 64-port switches can
be found for $30k. Including fiber and thinking forward to inter-switch trunking
gives a total 256-node cost of 256 × $700 + 5 × $30 000 + 280× $75 = $350k.

2.3 Avici Terabit Switch Router

The Avici router uses two direct-connect networks [2] as its switching fabric to
achieve high performance, economical scalability, and robustness. The dual fabric
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connects switching nodes (or line cards) using twelve 20-Gbps full duplex links
to form two 3-D toroidal meshes [1]. Each set of five line cards is grouped into a
quadrant which is connected via a backplane to form a loop in the z-dimension.
The x and y dimensions are formed by connecting neighboring quadrants along
the backplane in folded tori, which allows uniformly short wires to be used for
all connections, thereby lowering wiring costs as well as latency variations. With
this arrangement, an Avici router can be incrementally expanded to include up
to 14×16×5 = 1120 line cards. At 16 gigabit ethernet ports per line cards, this
configuration can interconnect a parallel system of 17 920 compute processors.

Similar to myrinet, the Avici router uses wormhole routing inside the fab-
ric to achieve low latency. Unlike myrinet, however, rather than buffering the
entire message inside the network, the Avici router segments its messages into
72-byte scheduling units and exercises credit-based flow control to prevent flit
loss. Together with its per-connection buffer management, and overprovisioned
fabric links relative to the line card I/O demands, the Avici router implements
an output-buffered virtual crossbar to eliminate the blocking problem in worm-
hole routing. Because of the huge speed mismatch between gigabit ethernet and
the fabric link (1:20), the Avici router will store incoming gigabit ethernet pack-
ets before forwarding to prevent buffer underrun within the fabric. Unlike con-
ventional switches, however, the number of store-and-forward operations in the
Avici reaches an upper bound of two, once at the incoming and the other at the
outgoing gigabit ethernet port. Moreover, because the Avici router is designed
for telecommunications applications, it is extremely robust and has extensive
SNMP-based management capabilities, a feature that is essential to building
reliable large parallel systems.

Replacing the switches in the cost calculation for conventional gigabit ether-
net, and dropping a few unneeded fibers gives a total 256 × $700 + $250 000 +
256× $75 = $450k.

3 Simulation Methodologies

We adapt existing simulation packages to capture important characteristics of a
technology, such as its link level protocol and switch architecture. Because these
characteristics are unique to the technology it represents, we are not concerned
with effects due to differences in implementation. Instead, we ensure the fidelity
of our simulation results by extending these packages to use the same set of
parallel algorithms to generate traffic. We also code an identical interface layer
to handle details of packet transmission and reception. Since the goal of our
study is to identify potential interconnect technologies, we do not consider end
station overhead. We plan to address the performance issues involving the host
adapter, device driver, and end-system protocol processing in a future study.

Because many users share the use of a parallel computer system, each will
allocate a number of processors from the pooled resources to solving his or her
problems. Therefore, we chose to conduct our simulation study using a 256-
node network to represent a typical user’s problem solving environment. The
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following subsections discuss the intermediate interface layers and the details of
the low-level simulators.

3.1 Opnet

MIL3’s Optimized Engineering Tools [11] is a comprehensive engineering sys-
tem capable of simulating large communication networks with detailed protocol
modeling and performance analysis. Its features include graphical specification
of models, event-scheduled simulation kernel, and hierarchical object-based mod-
eling. We selected Opnet to simulate the conventional gigabit ethernet switch
because Opnet has an existing model that simulates the gigabit ethernet proto-
col.

On the top level, we used Opnet’s network editor to compose our network
using components such as switches, nodes, and links. The network consists of
five conventional gigabit ethernet switches, 256 compute nodes, and full-duplex
links to interconnect them. We populated four switches each with 64 end nodes,
which are in turn connected via a fifth switch. We chose a star topology because
it offers the lowest hop count between the most distant nodes in the network.

At the next lower level, we used Opnet’s node editor to construct our com-
pute and switch nodes. A compute node consists of a module to run the parallel
application models that we wrote, a gigabit ethernet protocol entity, a transmit-
ter, and a receiver. The process model contains a state transition diagram which
represents the parallel code. Each of the 256 nodes in the system runs the state
machine which transitions between sending, receiving, and computing states.

3.2 Avici Simulator

Allen King and coworkers at Avici wrote a simulator [5] to be used in planning
the switch hardware they built. We inserted hooks into the simulator by which
we could feed our own traffic patterns into the switch: sendPacket() inserts a
packet into the fabric, while receivedPacket() is called up from the fabric to
notify our modules of the receipt of a packet at a destination line card. The
function nextFlitTime() notifies our code that the simulator has advanced in
time, and we use that notification to fire any pending events. Various other calls
are used by the fabric and the application code modules to notify each other of
initialization, completion, and to acquire or change fabric parameters. We also
added the modeling of a line card which mates 16 gigabit ethernet ports into the
Avici backplane.

Our interface layer also handles the details of segmentation and reassembly
so that an application is insulated from the transport details. This layer ensures
that no packet is dropped by keeping lists of in-flight messages, which also aids
in the generation of statistics.

3.3 Myrinet Simulator

The myrinet simulator [6] was initially developed by Chen-Chi Kuo as a grad-
uate student in the Computer Science Department at the University of Utah
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to be used in their full system simulator. We adapted just the myrinet part of
the simulator, and added an event handling mechanism along with the packet
tracking and upper layer frameworks written for the Avici simulator interface.

We generated hardware parameters from Myricom’s documentation or by
performing empirical tests on our cluster. Our connectivity topology is a two-
dimensional (wrapped) torus of switches, with eight nodes to a switch, and was
chosen for its scalability properties over more complex topologies. The links
between switches consist of two parallel cables, giving a doubled hop-to-hop
bandwidth of 2.56 Gb/s.

The same application codes designed for use with the Avici simulator couple
directly to the interface we wrote to communicate with Utah’s flit-level myrinet
simulator, and similar parsing tools can be used to deduce statistics from the
output of simulation runs.

4 Parallel Code Algorithms

Accurate characterization of network performance is a complex task. Simple
numbers such as minimum latency or maximum bandwidth are not sufficient
metrics to enable cross-technology comparisons. We augment these basic num-
bers with results from computational core algorithms from real parallel codes in
use at Sandia. Results from the tests are deferred until the following section.

A code entitled token_pass is our simplest test. It arranges the participating
processors in a virtual loop than iterates the passing of a “token” around the loop
a certain number of times. Each processor awaits a message from its neighbor to
the left, then delays a bit to simulate processing time, then sends a message to
its neighbor on the right. By changing the size of the token to be large, we can
perform accurate bandwidth measurements. By setting the payload to zero, we
find the minimum message latency. Since only two processors at a time are ever
involved in a communication, there are no contention effects to filter out from
the results.

The codes fan_in and fan_out are generated from the same source file with
different #define settings, as they perform quite similar functions. The former
simulates a global reduction whereby each processor sends a message to the
“host” processor. The sends are staggered slightly to avoid odd synchroniza-
tion effects in the switches, and to simulate real life in which it is impossible
to do clock-synchronized sends on a distributed machine. This test is good for
measuring performance degradation due to internal fabric blocking. In the re-
verse mode, fan_out has the host processor sending staggered messages to all
the other processors. This tests the blocking effects in the other direction. Per-
formance numbers from fan_in and fan_out model the startup and shutdown
events of parallel applications, which often include global broadcast and reduc-
tion phase.

The code mesh simulates a computational kernel from a two-dimensional
finite element calculation. This class of structured grid codes is very common
among the large scale calculations being performed today at the laboratories.
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The processors are laid out in a virtual two-dimensional mesh, and each processor
will communicate with its immediate neighbors in both the x and y directions.
The code performs a number of iterations of computation and communication
cycles, which represents the real code’s explicit time stepping algorithm as it
solves a generalized partial differential equation.

We have made some modifications to the mesh code to model a torus topology,
which is necessary for a code simulating periodic boundary conditions and arises
in calculations on a spherical domain or in free space, for instance. In the toroidal
topology, each processor always has four neighbors, unlike in the mesh where
edge and corner processors have fewer neighbors.

5 Results

Our results are presented in order of the algorithms we used to test the networks,
followed by a summary of all the tests.

5.1 Technology Characterization

We ran the token_pass code with a one-byte payload to determine the minimum
message latency between neighboring nodes in a 256-member virtual ring for all
three technologies. As mentioned earlier, since only two processors at a time
are involved in communication, there are no contention effects. We compiled
our results and listed the minimum, maximum, average, and standard deviation
values for each study in Table 1. As shown, the myrinet technology delivered very
good latency and jitter (latency variation). Jitter in the absence of congestion
is a function of network topology; it reflects the difference in distance between
token_pass neighbors in the network. The raw fabric speed for the Avici switch
is shown as the last line in Table 1.

Table 1. Minimum message latency results, in μs.

Min Avg Max σ2

Myrinet 0.388 0.427 0.869 0.093
Avici GigE 1.380 1.386 1.530 0.024

Conventional GigE 1.564 1.595 3.532 0.244

Avici fabric 0.180 0.186 0.330 0.024

As a result of the Avici’s higher fabric speed and path diversity in the 3D-
torus topology, myrinet’s performance is inferior to that of the Avici, as we
configured a 2D torus for myrinet due to its physical constraints. As expected,
since the Avici gigabit ethernet routes its packet through the Avici fabric, it had
inherited the fabric’s low jitter. The increases in its latency amounts to the sum of
two transmission delays, when the packet arrives at the input and when it reaches
the output of the Avici gigabit ethernet line cards. Store-and-forward switching
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is necessary here in order to prevent buffer underrun at the outgoing line card
switch due to the large speed mismatch; a fabric link is 20 times that of the
gigabit ethernet speed. Furthermore, because the ethernet standard imposes a
minimum packet size of 64-byte, the original one-byte message was padded before
transmission. Therefore, each of the transmission delays is actually 64∗8/1000 =
0.512 μs. Two times this value is roughly the increase seen in comparing to the
fabric’s latency.

The existing Opnet switch model does not emulate processing delay; conse-
quently, the latency values that we obtained through simulation (Table 1 row 3)
are better than measured statistics. In our star topology, a packet will traverse
either one or three hops depending on whether the immediate neighbor is on the
same switch or not. Since switches today typically incur about 10 μs of process-
ing delay, the values listed in Table 1 would have an additional latency of 10 μs
at the lower bound, and 30 μs at the upper bound, making the performance of
a conventional switch the least favorable of the three.

Using token_pass and a 15 MB message, we measured throughput for each
technology to verify the correctness of our simulation code. We chose that mes-
sage size because it is large enough to fill the end-to-end communication pipe, a
criterion necessary for throughput measurements. The end-to-end communica-
tion pipe is the product of the theoretical bandwidth and the round-trip time.
The simulation throughput values are different from the corresponding theoret-
ical bandwidth by less than half a percent.

5.2 Fan-In and Fan-Out

Table 2 lists the maximum, minimum, average, and standard deviation latency
results for a 2 kB message from our fan_in study. The results for smaller mes-
sages go linearly to zero, and are not shown. The simulations had 255 sources
each sending one messages to a single destination, thereby causing contention at
the destination host machine. Myrinet performance is roughly 20% better than
both the conventional and the Avici gigabit ethernet, because it has an effective
bandwidth of 1.28 Gb/s to the destination host as opposed to the 0.98 Gb/s of
gigabit ethernet.

Table 2. Latency statistics for the fan_in code. Units are in μs.

Min Avg Max σ2

Myrinet 13.19 1663.51 3313.83 956.55
Avici GigE 538.26 2941.32 4349.76 1055.05

Conventional GigE 24.83 2488.14 4345.48 1343.83

Avici fabric 4.68 129.72 233.49 66.55

Table 3 similarly shows the latency results for a 2 kB message in the fan_out
studies. A message was broadcast from the source to all destinations. As shown
in the table, the conventional gigabit ethernet switches offer the best end-to-end
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latency by far, because these switches implement multicast in hardware, where
a multicast packet is referenced and sent simultaneously to all multicast mem-
bers. On the other hand, wormhole routing emulates multicast in software; this
mechanism requires a source host to send a multicast packet multiple times,
one for each multicast destination. Therefore, myrinet exhibited the worst la-
tency performance. The Avici fabric fared better because of its higher aggregate
bandwidth and diverse paths.

Table 3. Latency statistics for the fan_out code. Units are in μs.

Min Avg Max σ2

Myrinet 13.43 1666.60 3319.09 957.94
Avici GigE 63.24 159.54 258.60 45.13

Conventional GigE 24.83 46.17 54.76 11.13

Avici fabric 21.18 141.44 233.43 61.62

5.3 Mesh and Torus

The results for both the mesh and torus algorithms are included in this section
as the codes are identical save for the extra edge connections in torus. Similar
results will also be seen in both.

Message Latency. The first data we present is a message latency. All messages
sent (and received) are recorded with timestamps across all the iterations of the
algorithm. The data in Table 4 list the average time for a message to pass through
the respective network, along with the standard deviation of the measurements
and the maximum and minimum times. It is seen by comparing the average
and maximum values for each technology that the maximum message transfer
time can be up to an order of magnitude more than the average in the case of
myrinet and conventional gigabit ethernet due to the presence of link contention.
Only with the Avici switch are the numbers more comparable. These maximum
numbers tend to pull up the averages.

The average transfer times for both the Avici and for myrinet are seen to
be similar, while the conventional ethernet is larger due to the bottleneck at
the second-stage switch in the center of the topology. It would be reasonable to
use trunked links from the first-stage switches to the central switch to provide
improved bandwidth and alleviate the bottleneck, but this type of scalability
will not go too far as commodity switch vendors only provide small numbers of
ports per switch. A fat tree using multiple switches is a possible solution, but
expensive, and may also not reach high node counts as the switches directly
connected to hosts will run out of ports in that case.

Up to a message size of 256 bytes, the myrinet network delivers average
latencies about 1 μs lower than does the Avici ethernet. The y-axis intercept of
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the myrinet average line is about 1 μs while that for the Avici is 2 μs. This is due
to the latency induced in the Avici switch core itself, which we measure to be
the same amount. Myrinet switches add about 300 ns per hop, with an average
of 3 hops per route in a 8×4 two-dimensional torus, to give the y-intercept seen
there.

Table 4. Latency simulation results from mesh algorithm.

Avici Myrinet
Size Min Avg Max σ2 Min Avg Max σ2

32 1.38 2.57 5.28 0.87 0.58 1.57 5.74 0.90
64 1.65 3.27 7.11 1.10 0.78 2.23 9.85 1.44

128 2.76 5.34 9.72 1.75 1.18 3.74 17.58 2.54
256 4.86 9.18 17.37 3.02 1.98 7.85 55.75 7.07
512 9.09 16.97 30.93 5.44 3.58 16.73 226.71 18.83

1024 17.49 32.56 55.95 10.25 6.78 36.54 441.90 43.75
2048 22.20 59.20 112.59 20.21 13.18 75.89 906.86 93.33

Ethernet
Size Min Avg Max σ2

32 1.56 49.55 174.77 19.82
64 1.85 49.35 175.06 19.90

128 2.88 49.30 190.47 20.65
256 4.92 48.18 214.20 26.61
512 9.02 48.32 333.28 52.31

1024 17.21 84.04 586.44 98.29
2048 29.52 151.36 1088.28 188.40

In the large message extreme, a 2 kB packet takes on average 59 μs to transfer
through the Avici ethernet network, or 76 μs to transfer through the myrinet
network; however, the worse case transfer time is a factor of eight greater for the
myrinet, almost as bad as in the conventional gigabit ethernet network. Note that
these are not raw transfer times, but the result of the interactions with transfers
between other pairs of nodes on the network. This leads us to conclude that
the effect is from the blocking induced by obstructing messages in the network
traffic. The Avici switch is configured to be non-blocking by its extreme path
redundancy and the fact that we do not overload the ports on each line card,
so any difference between the maximum message transfer time and the average
is due to output port contention, i.e., when multiple messages are waiting to
enter a single destination host. In the case of the conventional gigabit ethernet,
messages may be blocked at the output ports of each of the up to three switches
in the path from the source to the destination. The case for Myrinet involves
up to six switches, but the bottleneck is not as great as in ethernet due to the
multiple routes of the switches.
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The message latency values for the related algorithm, torus, are well inside
of one standard deviation away from those presented for mesh, and offer no solid
conclusions. The algorithmic difference is that slightly more communication is
occurring, and it is becoming more regular in that each processor talks to exactly
four neighbors in torus. The underlying network is identical in both algorithms.
This regularity seemed to help myrinet to provide fairer bandwidth sharing dur-
ing contention, where results show a decrease in average and maximum latencies
and standard deviations for all message sizes. This phenomenon is absent in the
Avici case because of its much higher internal fabric speed. Conventional gigabit
ethernet switches lack path diversity, and thus the increased offered load pre-
sented by the torus algorithm increased the queue depths at the output ports
of the switches.

Completion Times. The second data analysis we perform takes into account
more of the details of the algorithm. Figure 1 shows plots of the results at a
256 byte message size, for each of the three technologies, and for both of the
algorithms.

Each plot shows, for each iteration, and for each processor, the time when that
processor completed that iteration. The unlabeled vertical axis is the iteration
number of the algorithm, from 1 to 10. The horizontal axis is the global time,
in microseconds, and varies from plot to plot as the completion times are quite
different with respect to both message size and to network technology.

Each integral band of y-axis is broken up into 256 points, one for each pro-
cessor, and a dot is placed in a processor’s strip in a given iteration number at
the time that processor has sent and received all messages necessary to proceed
with the calculation of that timestep, or equivalently, when the processor has
received the results of the previous iteration from all its neighbors.

One thing to notice in the plots is that some processors always complete
much earlier than the others. For the mesh case, these are usually the ones
on the corner which have fewer messages to exchange with their neighbors, as
there are fewer neighbors. In the torus case, this is not true, and the individual
bunches of dots tend to be more even, as the corner and edge processors can not
advance too far ahead of the rest of the fray in the middle.

At the relatively small 256 byte message size shown in the figure, the iteration
bunches are well separated from each other as most of the time to completion of
each iteration is taken up by computation time, represented in our simulation
by a sleep of 10 μs. An ideal network which used no time to transfer messages
would show perfectly vertical lines at each iteration, with the last line (between 9
and 10) at 90 μs. Anything more than this is the effect of waiting for communi-
cations.

Unshown are the plots for the rest of the studied range of message sizes, where
looking at just the Avici results, we observe that the total time to completion is
gradually increasing, from 140 μs for 32 byte messages, to 900 μs at 2 kilobyte
messages, and that each iteration bunch is becoming separated into individual
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Fig. 1. Completion times, 256 byte messages, for the three technologies and the two
algorithms.
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stripes, with the edge processors finishing earlier than the bulk in the center.
For the torus case there is no obvious striping.

In the myrinet network case, where the groups are fuzzier as the effect of the
larger maximum communication times listed in Table 4. The apparent patterns
in the large message size plots show the discrepancy in transfer time between
nearby nodes and distant nodes in the mesh (or torus) as messages sent farther
through the network are subject to more potential points of blocking. Total time
to completion for these simulations are the same as for Avici at small message
sizes, to about three times longer in the large message case.

The results for the conventional gigabit ethernet cascade of switches feature
x-axis ranges consistently three to six times larger than those for the Avici plots.
Great multi-millisecond stripes can be seen in the large message size plots for
the ethernet where whole regions of the two dimensional mesh proceed into later
iterations while other regions are still working on the communications associ-
ated with earlier iterations. In the torus case this horizontal striping is more
pronounced but the iterations are forced to be more temporally bunched as the
added toroidal communication patterns introduce more dependencies between
processors.

This spread in iteration number is able to occur since there is no global
synchronization step between iterations – each processor is permitted to proceed
to the next iteration as long as it has received results from the previous iteration
from all its neighbors. Following this thought, it can be seen that a certain
processor can get up to two iterations in time away from those processors which
are neighbors of its immediate neighbors. This continues up to the boundaries
of the mesh, which for our 16 × 16 case means that the spread can proceed up
to eight iterations apart.

Fig. 2. Total time for completion, mesh and torus topologies, with slope of linear fit.
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It is interesting to notice the rate of degradation of network performance with
increasing message size. This is shown in Figure 2 for the two algorithms. A linear
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fit of the largest two points for each technology and each algorithm is overlaid on
the plot near the corresponding curve. This slope represents the scalability of the
given network technology to the two algorithms under increasing message size.
Both codes give the same scalability performance on the first two networks, but
for conventional gigabit ethernet, the increased offered load seen in the torus
algorithm renders the network less scalable as message sizes grow.

Summary. The average message latency delivered by the three network tech-
nologies is affected both by available bandwidth and the presence of bottle-
necks. The conventional cascaded gigabit ethernet without trunking is hampered
severely by both these factors. Fabric blocking is seen to be bad for parallel algo-
rithms in that it increases the maximum latency seen by any particular message,
and since all messages must eventually reach their destination before the code
can complete, that maximum latency value is crucial to the wall-clock perfor-
mance of a code. The Avici switch is seen to have the smallest amount of fabric
blocking, while the myrinet fabric offers potential blocking points at every switch
along the path of a message.

The algorithm we tested was chosen due to its ubiquity in parallel scientific
computing. It emphasizes the nature of locality in many algorithms in production
use today, but points out in the results above that not all communications will
physically be local even though in the virtual topology they may appear to be
nearest neighbor. This mapping of algorithmic topology to physical topology
is crucial for application performance. We did not model an algorithm which
involved a global synchronization, which are also common especially for those
that do disk input and output. The effects of this communication pattern can
be discerned by looking at the fan_in and fan_out results of Section 5.2.

6 Conclusions

We have presented the results of analysis of three different major network ar-
chitectures for parallel commodity computing. It is important to choose the
network correctly as it can have a large impact on all but the most embarrass-
ingly parallel applications, and may be the source of up to half of the cost of the
entire machine. Important factors to consider are raw performance figures such
as bandwidth and latency, as well as more complex parameters such as jitter,
routing, multicast support, and distribution of blocking in the fabric.

Since our network design goal is to facilitate the performance of real appli-
cations, we evaluated the performance of the three network technologies when
applied to specific application cores important to our users. In this context we
analyzed timing results gathered from the networks and drew conclusions from
our knowledge of the network about its effect on performance of the application.

Our simulation results show that myrinet behaves well in the absence of
congestion. Under heavy load, its latency suffers due to blocking in wormhole
routing. Also myrinet is limited from scaling too far due to the short cable
length problem. Future development by Myricom may alleviate that constraint,
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although the cost to latency or budgets is unknown. The simplicity in the myrinet
switch results in low per-connection cost; however, the non-commodity nature
of the host network interface cards keep that side of the connection expensive.

Conventional gigabit ethernet switches can not scale to support more than
64 gigabit ethernet ports, which lead to the introduction of a topology which
involves cascading multiple stages of small switches. The presence of multiple
hops in a path between hosts, and the store-and-forward nature of legacy ether-
net leads to unacceptable message delays. Bandwidth bottlenecks at the topmost
switch in the cascade are also a problem.

The Avici terabit switch router has an internal fabric which is quite similar to
myrinet, in that it is a very high-bandwidth three-dimensional torus using source
routing and simple non-buffering switches. The line cards present standard giga-
bit ethernet connections to hosts, though, in keeping with the current commodity
favorite. Our simulations show that the Avici switch outperformed myrinet on
large messages (above 512 bytes), and was comparable in the small-message
regime. From a cost standpoint, Avici is only slightly cheaper than myrinet for a
comparable topology, and is expected to reduce in cost with further penetration
of gigabit ethernet into the market.
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Abstract. The Virtual Interface Architecture (VIA) specification has
been developed to standardize user-level network interfaces that provide
low latency, high bandwidth communications. Few hardware and soft-
ware implementations of VIA exist. Since the VIA specification is flexi-
ble, different choices exist for implementing various components of VIA
such as doorbells, address translation methods, and completion queues.
Although previous studies have evaluated the overall performance of dif-
ferent VIA implementations, there has not been a comparative study
on the performance of VIA components. In this paper, we evaluate and
compare the performance of different implementations of essential VIA
components. We discuss the pros and cons of each design approach and
describe the required support for implementing each of them. As a user
application, we use the NAS Parallel Benchmarks to study the effect
of caching the address translation tables on the NIC and to study de-
sign issues involved in implementing completion queues. As a hardware
platform we use the IBM Netfinity SP cluster running the NT 4.0 oper-
ating system and a Myrinet connected cluster of PCs running the Linux
operating system.

1 Introduction

Distributed and high performance applications require a low latency, high band-
width communication facility for exchanging data and synchronization opera-
tions. Raw bandwidth of networks have increased significantly in the past few
years and networking hardware supporting bandwidths in the order of gigabits
per second have become widely available. However, the traditional networking
architectures and protocols do not reach the performance of the hardware at
the application level. The layered nature of the legacy networking softwares and
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the usage of expensive system calls and extra memory–to–memory copies re-
quired in these systems are some of the factors responsible for degradation of
the communication subsystem performance as seen by the applications.

In recent years, communication systems [12] such as AM [21], VMMC [8],
FM [14], U-Net [20,22], LAPI [17], and BIP [15] have been proposed by the
research community and industry to address these issues. All of these communi-
cation systems use much simpler communication protocols in comparison with
legacy protocols such as the TCP/IP. The role of the operating system has been
much reduced in these systems and in most cases user applications are given
direct access to the network interface. The Virtual Interface Architecture (VIA)
specification has been developed to standardize these user-level network inter-
faces and to make their ideas available in commercial systems [4]. The VIA
specification has been influenced mostly by the U-Net and VMMC. Since the
introduction of VIA, few software and hardware implementations of VIA have be-
come available. The Berkeley VIA [11,10], Giganet VIA [18], Servernet VIA [18],
MVIA [2], and FirmVIA [7] are among these implementations. Different compo-
nents of VIA have been implemented in different ways in these implementations.
Although, the performance of these implementations have been evaluated, there
has not been a detailed study of the design choices for implementing different
components of VIA.

In this paper, we discuss the essential components of VIA and present dif-
ferent approaches for implementing these components. We discuss the pros and
cons of each approach and present the required support for their implementa-
tions. In particular, we discuss different possible approaches for implementing
components such as software doorbells, virtual-to-physical address translation,
and completion queues. We use the NAS Parallel Benchmarks to study the ef-
fect of caching the address translation tables on the NIC and to study different
completion queue implementations. We use a subset of VIA implemented on an
IBM SP-connected Netfinity cluster [7] running the MS Windows NT operating
system and a Myrinet-connected cluster of PCs running the Linux operating
system to evaluate different components of VIA.

The rest of this paper is organized as follows: In Section 2, we briefly overview
the Virtual Interface Architecture, discuss the VIA send and receive operations
in detail, and identify different important components involved in these opera-
tions. Different design alternatives for implementing different components of VIA
are discussed in Section 3. The performance evaluation results are presented in
Section 4. Related work is discussed in Section 5. In Section 6, we present our
conclusions.

2 Virtual Interface Architecture (VIA)

In this section we first present an overview of VIA. Then, we discuss different
events that occur during the send and receive operations and present the basic
components involved in performing these operations. We focus on systems with
programmable NICs.
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2.1 Overview

The Virtual Interface Architecture (VIA) is designed to provide high bandwidth,
low latency communication support over a System Area Network (SAN). A SAN
interconnects the nodes of a distributed computer system[4]. The VIA specifica-
tion is designed to eliminate the system processing overhead associated with the
legacy network protocols by providing user applications a protected and directly
accessible network interface called the Virtual Interface (VI).

Each VI is a communication endpoint. Two VI endpoints on different nodes
can be logically connected to form a bidirectional point-to-point communication
channel. A process can have multiple VIs. A send queue and a receive queue (also
called as work queues) are associated with each VI. Applications post send and
receive requests to these queues in the form of VIA descriptors. Each descrip-
tor contains one Control Segment (CS) and zero or more Data Segments (DS)
and possibly an Address Segment (AS). Each DS contains a user buffer virtual
address. The AS contains a user buffer virtual address at the destination node.
Immediate Data mode also exists where the immediate data is contained in the
CS. Applications may check the completion status of their VIA descriptors via
the Status field in CS. A doorbell is associated with each work queue. Whenever
an application posts a descriptor, it notifies the VIA provider by ringing the
doorbell. Each VI work queue can be associated with a Completion Queue (CQ)
too. A CQ merges the completion status of multiple work queues. Therefore,
an application need not poll multiple work queues to determine if a request has
been completed.

The VIA specification requires that the applications register the virtual mem-
ory regions which are going to be used by VIA descriptors and user communica-
tion buffers. The intent of the memory registration is to give an opportunity to
the VIA provider to pin (lock) down user virtual memory in physical memory
so that the network interface can directly access user buffers. This eliminates
the need for copying data between user buffers and intermediate kernel buffers
typically used in traditional network transports.

The VIA specifies two types of data transfer facilities: the traditional send-
receive messaging model and the Remote Direct Memory Access (RDMA) model.
In the send/receive model, there is a one to one correspondence between send
descriptors on the sending side and receive descriptors on the receiving side.
In the RDMA model, the initiator of the data transfer specifies the source and
destination virtual addresses on the local and remote nodes, respectively. The
RDMA write operation is a required feature of the VIA specification while the
RDMA read operation is optional. In this paper, we focus on the send/receive
messaging facilities of VIA.
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2.2 Message Passing in VIA

For sending and receiving messages, the following major steps are taken:
Constructing the Descriptor: The application creates a descriptor in a reg-
istered memory region. This descriptor includes the virtual address of the send
or receive buffer and its length. The message buffer is allocated from a regis-
tered memory region. The descriptor also contains a status field which the VIA
provider updates upon completion of the operation. Posting the Descriptor:
The application posts the descriptor using the VipPostSend or VipPostRecv
function call. Through the doorbell mechanism, the NIC is informed about the
existence of the posted descriptor. Obtaining the Descriptor by the NIC:
The NIC retrieves from the descriptor the information required for sending or
receiving a message. The information includes the address and the length of the
user buffer and the address of the status field of the descriptor. Performing
the Operation: The NIC performs the send operation by injecting the data
into the network after it is transferred from the user buffer to the NIC. For the
receive operation, the message is received from the network into the NIC mem-
ory and then into the user buffer. Marking the Descriptor as Complete:
After performing the send or receive operation, the NIC marks the status field
of the VIA descriptor as complete. If a CQ is associated with the VI, the NIC
also makes an entry in the CQ so that the application can detect the completion
through CQ as well. Application Detecting the Completion of the Oper-
ation: The application can check the status of the operation using VipSendDone
and VipRecvDone in a non-blocking fashion, VipSendWait and VipRecvWait in
a blocking fashion, and VipCQDone and VipCQWait if a CQ is associated with
the corresponding work queue.

2.3 Basic Components of VIA

Considering different operations involved in sending and receiving messages,
three major components can be identified as the basic components of the mes-
sage passing operations. These components are: 1) informing the NIC of an
outstanding send or receive request, 2) the NIC obtaining information about the
outstanding operation and corresponding user data buffers and performing the
operation, and 3) the NIC informing the user program of the completion of send
and receive operations. In order to implement the send and receive operations
efficiently, it is crucial to implement these components as efficiently as possible.
In the next section, we present different design alternatives for implementing
these components and present the pros and cons of each of them. It should be
noted that we only consider the methods which do not require any unnecessary
data copies.

3 Design Alternatives

In this section, we discuss the implementation of doorbells which are related
to the first component of message passing operations and are used for inform-
ing the NIC of the existence of outstanding send or receive descriptors. We
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also study different implementations of virtual-to-physical address translation
and the possibility of caching descriptors. These two issues relate to the second
basic component or the mechanism through which the NIC obtains information
about the outstanding operations and corresponding user data buffers. The third
component, the mechanism through which the user program is informed of the
completion of send and receive operations, is also discussed with respect to the
implementation of completion queues.

3.1 Doorbells

VIA specifies that each VI be associated with a pair of doorbells. The purpose
of a doorbell is to notify the NIC of the existence of newly posted descriptors.
Doorbells can be implemented in hardware or software. However, most of the
current generation NICs do not provide any hardware support for doorbells, they
need to be implemented in software. Therefore, in this paper, we focus on the
design choices for implementing doorbells in software.
Approach 1 (D1): One approach for implementing doorbells in software is
allocating space for each doorbell in the NIC memory and mapping it to the
address space of the process. The user application rings the doorbell by simply
setting the corresponding bit in the NIC memory or by writing the address of the
descriptor (or the descriptor itself) in the NIC memory. To protect a doorbell
from being tampered by other processes, doorbells of different processes need to
be on separate memory pages in the NIC since protection granularity of a kernel
is one page (e.g. 4KB). The advantage of using this mechanism is that there is
no need to go through the kernel for ringing the doorbells and this operation
can be implemented in user space. The disadvantage of this approach is the cost
of polling the VIs for send descriptors. As the number of active VIs increases,
the NIC spends more time polling the send doorbells to check if there is any
send descriptor to be processed. This limits the scalability of the communication
subsystem. The other shortcoming of this approach when a single word or bit is
used for each VI is that when a descriptor is posted, the subsequent post cannot
proceed until the NIC becomes aware of the first posted descriptor. To overcome
this shortcoming, a circular buffer can be used as a queue for each VI such that
multiple descriptors can be posted by the user application even when the NIC
firmware is busy performing other operations (such as sending and receiving
messages) and hasn’t become aware of some of the posted descriptors yet.
Approach 2 (D2): In order to avoid the cost of polling of VIs for send descrip-
tors, a second approach in which the kernel intervention is required can be used.
In this approach, a centralized queue of send descriptors (or handles to descrip-
tors) are maintained by the NIC. Since all VIs share the same centralized queue,
a mechanism is required to guarantee that this queue is accessed in an operating
system safe fashion. Thus kernel intervention is required. In this approach, the
need for polling all the active VIs is eliminated and the NIC needs to only look
at the centralized queue for send descriptors. The disadvantage of this approach
is the added delay of going through the kernel. The advantage of this approach
is the elimination of the NIC polling active send requests.
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The problem of polling send descriptors does not occur for receive descriptors.
When a message is received at the NIC, the VI id of the received message is used
to obtain the receive descriptor posted for that particular VI. If for some reasons
the posted receive descriptors need to be preprocessed before the messages arrive
(for example to perform the virtual-to-physical address translation which will be
discussed later) then finding receive descriptors requires polling the active VIs
and causes a similar problem.

3.2 Caching Descriptors

As discussed in Section 2.2, when the NIC recognizes that a descriptor is posted,
it needs to obtain the information about the message (such as the user buffer
address and the size of the message) from the descriptor. The descriptors are
constructed by the VIA applications and therefore are stored in the host memory.
The question is whether the host initiates the transfer of the descriptor or the
NIC. Since DMA is the only way by which most NICs can access the host
memory but the host can use PIO for transferring data to the NIC, there is a
tradeoff between these two approaches with respect to the size of the descriptor
being transferred from the host memory to the NIC memory. For the receive
descriptors, the advantage of moving the descriptors to the NIC memory when
the descriptors get posted is that the time for this transfer is not part of the
the message latency. It should be noted that the host processor is required to be
involved in PIO operations while the DMA operations are performed without
the involvement of the host processor. We’ll have a performance evaluation of
these methods in Section 4.2.

3.3 Address Translation

Most NICs (including the widely used PCI based NICs) use physical addresses for
performing DMA operations, whereas VIA descriptor elements, e.g. user buffer
addresses, are virtual addresses. Therefore virtual-to-physical address transla-
tion is required. This address translation is required not only for transferring
data, but also for accessing descriptors (if they are not cached in the NIC mem-
ory) and updating the status of operations by NIC. VIA specifies a memory
registration mechanism to ensure that the page frames which are accessed by
the NIC are present in the physical memory. Registered virtual memory pages
are pinned down in physical memory. Before data is transferred to or from these
memory regions, the virtual addresses should be translated to physical addresses.
It should be noted that using approaches such as using a preallocated pinned
contiguous buffer (at the boot time) from which user buffers are allocated or us-
ing DMA regions through which data transfers to and from NIC are performed is
not reasonable. Allocating user buffers from a preallocated buffer requires mod-
ifications to the applications to use a custom routine for user buffer allocations.
Using DMA regions for data transfers is not a viable choice because of the re-
quired extra data copies to and from these regions at the sending and receiving
nodes.
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Two critical issues in implementing the address translation for VIA are the
location of address translation tables (commonly known as Translation Lookaside
Buffers or TLBs) and the method of accessing them (i.e. whether the host or
the NIC performs the translation). The VIA TLBs can be located in the host
or NIC memory and can be accessed by the host or the NIC. Therefore, there
are four possible approaches for performing the address translation: 1) the TLB
is in the host memory and host performs the address translation, 2) the TLB
is stored in the NIC memory and the NIC does the address translation, 3) the
TLB is located in the host memory and the NIC performs the translation, and
4) the TLB is in the NIC memory and the host performs the address translation.
Among these approaches, the fourth approach does not provide any advantage
over the other approaches and has no practical use. In the rest of this section,
we discuss the other three approaches in more detail.
Approach 1 (AT1): In this approach, the TLB is located in the host memory
and the address translation is performed by the host. Since the user processes
can not be trusted to provide the physical addresses, the translation (the TLB
lookup) is performed in kernel space. The disadvantage of this approach is the
need for user to kernel context switching. Since the VIA requires all data buffers
to be in registered memory regions, the TLB lookup cost can be minimized by
the creation of an address translation table for each registered memory region.
This table should include the addresses of all the physical page frames which
correspond to the memory region. By creating such a table at the memory reg-
istration time, the address translation can be efficiently done by indexing this
table. The advantage of this approach is that the NIC memory requirement is
small since the TLB is located in the host memory.
Approach 2 (AT2): In this approach, the TLB is located in the NIC memory
and the NIC is responsible for performing the virtual-to-physical address trans-
lation. The limitation of this approach is the size of memory required for the
TLB. For example, in order to support 256 MB of registered memory, a TLB of
256 KB is required. The available memory of the NIC is usually much smaller
than that of the host, and the memory required for storing the TLB puts a heavy
burden on the NIC resources and makes the implementation not scalable.
Approach 3 (AT3): In this approach, the TLB is located in the host memory
but the translation is done by the NIC. The advantage of using this approach
is that there is no need for using a big portion of the NIC memory for storing
the TLB. The disadvantage of this approach is that the NIC requires to access
the host memory for obtaining the translation. This access is usually done by a
DMA operation and may have a high DMA startup delay. In order to minimize
this problem, a portion of the NIC memory can be used to cache the translations
such that future references to a particular page frame can be resolved without
accessing the host memory. The size and characteristics of this cache along with
the behavior of the application programs affect the overall performance of the
address translation operation, if this approach is used.

We discuss the cost of implementing these approaches for the virtual-to-
physical address translation in Section 4.3.
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3.4 Completion Queues

As mentioned in Section 2.1, each work queue can be associated with a Comple-
tion Queue (CQ). In these cases, the notification of completed requests should be
directed to a CQ on a per-VI work queue basis. The description of the VipCQDone
states that it is possible to have multiple threads of a process wait on a CQ and
its associated work queues [4]. Therefore, the VIA provider updates both the
work queue and its associated CQ upon the completion of a request. Marking a
descriptor as complete (in the work queue) is done by DMAing the status field
of the descriptor (with the bit corresponding to the completion of the operation
set) from the NIC to the host. For supporting the CQs, there are two possible
approaches.
Approach 1 (CQ1): In this approach, the NIC in addition to updating the
status field of the descriptor, inserts the descriptor handle into the associated CQ.
The disadvantage of this approach is that an extra DMA operation is required for
the insertion of the descriptor handle to the CQ. The advantage of this approach
is that the application spends constant time checking for a completed operation
regardless of the number of work queues associated with a CQ.
Approach 2 (CQ2): In this approach, no entries are added into the CQ. In fact
there is no CQ in the host memory. The completed operations are simply found
by polling the work queues associated with the CQ. That is, the VipCQDone
function is implemented such that either VipSendDone or VipRecvDone is called
for each work queue associated with the CQ. The advantage of this approach
is that NIC need not perform a DMA operation for inserting the handle of the
completed descriptor into the CQ. The disadvantage of using polling in this
manner is that the method does not scale well with the increase in the number
of work queues associated with a CQ. However, since in many applications each
node communicates only with a small set of other processes, and therefore a
limited number of work queues are associated with each CQ, this approach may
be viable for implementing CQs.

We compare the cost of the implementation of these two approaches in Sec-
tion 4.4. We also investigate how the scalability issue of the second approach can
be dealt with.

4 Performance Evaluation

In order to evaluate different design alternatives discussed in Section 3 of this
paper, we implemented a subset of VIA on two different systems. The first system
consisted of 300 MHz Pentium II PCs with 128 MB of SDRAM and a 33 MHz/32-
bit PCI bus and ran the Linux 2.0 operating system. The Myrinet switches and
33 MHz LANAI 4.3 NICs were used as the interconnect [9]. The second system
was an IBM Netfinity SP switch-connected Cluster [7]. This cluster consisted
of 450 MHz Pentium III PCs. Each node had 128 MB of SDRAM and a 33
MHz/32-bit PCI bus and ran the NT 4.0 operating system. These PCs were
interconnected by an IBM SP switch and 100 MHz TB3PCI NICs [7]. These two
testbeds represent a wide range of available network-based computing platforms.
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In the rest of this section, we first present the cost of the basic operations
in these two systems. Then, we evaluate and compare different alternatives for
implementing different components of VIA.

4.1 Basic Operations

Since Programmed I/O (PIO) and DMA are the major methods for transferring
data between the host and the NIC, we measured the cost of these operations.
We also measured the cost of user to kernel space switch for both systems. For
our NT testbed we used the Fast IO Dispatch method [19] and for our Linux
testbed, we used a fast trap. These measurements are presented in Table 1.

Table 1. Cost of basic operations in the Myrinet-Linux and SP-NT testbeds.

Operation Myrinet-Linux SP-NT

Host PIO Write 0.16 μs/word 0.33 μs/word
Host PIO Read 0.49 μs/word 0.87 μs/word
User-space to Kernel-space 1.06 μs (Fast Trap) 2.27 μs (Fast IO Dispatch)
DMA Startup (host to NIC) 1.72 μs 1.78 μs
DMA Startup (NIC to host) 1.47 μs 1.61 μs

4.2 Caching Descriptors

As discussed in Section 3.2, the choice of caching the send descriptors when
they are posted depends on the cost PIO and DMA operations. From the cost
of these operations in our testbeds (Table 1), it can be seen that transferring
up to five words through PIO is less time consuming than using the DMA in
the Netfinity SP system. In the Myrinet-Linux testbed, transferring up to ten
words can be done in a faster manner by using PIO. It should be noted that in
neither of our testbeds, PCI write combining was used. If a system supports PCI
write combining, a larger number of words can be transferred by PIO before the
point where using DMA becomes more efficient. Another factor which affects the
decision about caching send descriptors is the CPU utilization. While the host
processor is not involved if DMA is used, using PIO requires the host to perform
the transfer and increases the host CPU cycles used for send operations.

The situation is slightly different for receive descriptors. If the receive descrip-
tors are to be accessed by DMA operations, a simple implementation performs
the DMA when the corresponding message is received at the NIC of the receiving
node. This will result in an increase in the latency by the cost of transferring
the descriptor to the NIC. However, if the descriptor is cached at the time it
gets posted, in most cases the cost of this transfer is not part of the send and
transmission times of the message. Even if the NIC is responsible for the trans-
fer, it is possible to mask the transfer time for receive descriptors by transferring
the descriptors before the corresponding messages arrive at the NIC. However,
implementing this feature requires an increase in the complexity of the NIC
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firmware. Furthermore, the NIC may need to poll all the receive queues of active
VIs to see if there is any posted receive descriptor to be processed. Since the
NIC processors are usually much slower than the host processors (4.5 times in
our Netfinity cluster and 10 times in our Myrinet network), the increase in the
complexity of firmware and the need for polling can degrade the performance
of the firmware and increase the latency of messages. Furthermore, if the rate
of incoming messages is high and/or the rate of messages being sent out from
a particular node is high, the NIC may not get a chance to get the receive de-
scriptor before the message arrives. In these situations, before NICs can retrieve
the information about the descriptor, it has to store the message in a temporary
location. If the message is kept in the NIC memory, messages might be dropped
or the reception of messages might need to be stalled because of the usually
small amount of available NIC memory. If the temporary storage is in the host
memory (with an address known to the NIC), there will be an unnecessary data
copy. Either way, the performance of the communication subsystem will degrade.

It is to be noted that the whole descriptor need not to be cached. Only those
portions of the descriptor which are required by the NIC should be cached.
In particular, the address and size of the data buffer, the control field of the
descriptor (which includes the information such as the type of the operation)
and the address of the status field of the descriptor should be cached on the
NIC.

4.3 Address Translation

Three approaches for performing the address translation were discussed in Sec-
tion 3.3. In the first approach (AT1), where the TLB is in the host memory and
the host performs the translation, the cost of the address translation is essentially
the one time user space to kernel space switch for each send or receive operation
and the cost of the table lookup for each page frame of the send or receive buffer.
In order to reduce the TLB lookup cost, one table for each registered memory
can be created upon the registration of the memory region. This table includes
the physical addresses of (the beginning of) all the page frames that the mem-
ory region spans over. By creating such a table, the virtual-to-physical address
translation can be done by indexing the address translation table without any
need for searching the table or multiple indirections. The Average cost of the
address translation when the AT1 approach is used, is shown in the first row of
Table 2. The overall cost of the translation is this additional cost plus the time
required for accessing the TLB for each page frame of the send or receive buffer.

In the second approach (AT2), where the TLB is located in the NIC memory,
a similar mechanism can be used. In this method, there is no need to go through
the kernel for the address translation. The second line in Table 2 shows the
additional cost for performing the translation by using this approach. It can
be seen that this additional cost is zero. The overall cost of the translation for
each send or receive operation is equal to the number of page frames of the
send or receive buffers times the time required to access an element of the TLB.
The cost of registering memory regions is increased in this method because the
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Table 2. Cost of different methods of implementing the virtual-to-physical ad-
dress translation. (See Figures 1 through 4 for the value of Miss Rate for different
benchmarks.)

AT Location/ NIC Memory Myrinet-Linux Avg. SP-NT Avg.
Method Translator Requirement Additional Cost Additional Cost

AT1 host/host None 1.06 2.27
AT2 NIC/NIC Proportional 0 0
AT3 host/NIC Constant 1.72× Miss Rate 1.78× Miss Rate

TLB should be created and transferred to the NIC. Creating the TLB on the
NIC requires multiple PIO write operations (based on the size of the registered
memory). However, since the memory registration happens infrequently, this
increase in the cost of memory registration can be tolerated. The more limiting
factor for implementing this approach is the large memory space required for
keeping the TLBs on the NIC. While there are NICs with large amount of
memory, most NICs provide a limited amount of memory. On the other hand,
with the increase in the size of available host physical memory and registered
memory regions, the required memory on the NIC increases. These requirements
make the third approach a more realistic and scalable approach for implementing
the address translation.

In the third approach (AT3), the NIC perform the translation while the
TLB is stored in the host memory. Since the TLB is stored in the host memory,
the memory requirement on the NIC is minimal. However, if for every address
translation the NIC is required to access the host memory (through DMA) this
approach performs much worse than the second approach. In order to reduce the
cost of the address translation while the size of required NIC memory is kept low,
caching the address translations is used. If the translation of a particular physical
address is found in a software cache (kept in the NIC memory), the translation
can be performed quickly by accessing the corresponding cache entry. If the
translation is not found in the cache, an access to the TLB in host memory
(through DMA) is required (Table 2).

In order to evaluate the effectiveness of caching and estimating the required
cache size, and in the absence of the existence a wide variety of applications
and benchmarks for VIA, we used the NAS Parallel Benchmarks (NPB) [3,5]
version 2.3 to gather the list of addresses being referred in these benchmarks.
We profiled the NAS benchmarks to record the addresses of the send and receive
buffers being used in these benchmarks. We ran the benchmark with 4, 16, and
64 processes and used two different problem sizes: class A and class B. We used
different TLB cache sizes and degrees of associativity. It should be noted that
the TLB cache is implemented in software and is stored in the NIC memory.
(We haven’t presented the data for the Embarrassingly Parallel (EP) and Fast
Fourier Transform (FT) benchmarks because the communication operations used
in these benchmarks are such that the performance of the address translation
does not affect the execution time of the program significantly.)
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Fig. 1. The cache miss rate for the NAS benchmarks (class A) using four pro-
cesses (left) and 16 processes (right) with 128-entry direct-mapped caches. C
and NC denote compulsory and non-compulsory misses, respectively.
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Fig. 2. The cache miss rate for the NAS benchmarks (class A) using four pro-
cesses (left) and 16 processes (right) with 1024-entry direct-mapped caches and
128-entry 8-way associative caches. (The miss rates are identical for both of
these cache types.) C and NC denote compulsory and non-compulsory misses,
respectively.

Figure 1 shows the cache miss rates for the class A NAS benchmarks on a
system with 128-entry direct-mapped caches. The results for running these pro-
grams on four and 16 processes are shown and cache misses are broken down
into send and receive misses (compulsory and non-compulsory). It can be seen
that with such a small cache and when four processes are used, in four of the
benchmarks more than 80% of memory accesses result in a cache miss. When
the programs are run on 16 processes the number of cache misses reduces sig-
nificantly. If the cache size is increased to 1024 (Fig. 2), the cache miss rates
for all benchmarks other than IS become negligible. Increase in the number of
processes result in an decrease in message sizes and this compensate the effect
of the increase in the number of messages being transmitted. It is interesting
to see that miss rates are identical for a 1024-entry direct mapped cache or a
1024-entry cache with the degree of associativity of eight. The access time of a
software direct-mapped cache is less than that for a software associative cache.
Therefore, given the same performance, using a direct-mapped cache is preferred
over an associative cache when implemented in software.

Figure 3 shows the cache miss rates for the class B NAS benchmarks on
a system with 128-entry direct-mapped caches. Note that the results shown in
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Fig. 3. The cache miss rate for the NAS benchmarks (class B) using 16 processes
(left) and 64 processes (right) with 128-entry direct-mapped caches. C and NC
denote compulsory and non-compulsory misses, respectively.
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Fig. 4. The cache miss rate for the NAS benchmarks (class B) using 16 pro-
cesses (left) and 64 processes (right) with 1024-entry direct-mapped caches and
128-entry 8-way associative caches. (The miss rates are identical for both of
these cache types.) C and NC denote compulsory and non-compulsory misses,
respectively.

this figure have been obtained from running these programs using 16 and 64
processes. The cache miss rates for systems with 1024-entry caches are shown in
Figure 4. A similar pattern to those for class A benchmarks (smaller problem
size) can be seen. It is interesting to compare the cache miss rates for these
benchmarks with different problem sizes. When the benchmarks use 16 processes,
increasing the problem size (from class A to class B) result in an increase in the
cache miss rates. Using caches with 1024 entries are shown to be enough to
make the cache miss rates for all class A benchmarks negligible. However, when
the problem size is increased, the BT and IS benchmarks produce a significant
number of misses.

It can be seen that providing a larger cache size reduces the number of misses
significantly. The required cache size for making cache misses negligible is shown
to be very small. We have also studied the effect of using victim caches. The
results show that the gain obtained from using victim caches is minimal. (We do
not present the results for victim caches here because of the space limitation.) It
should be noted that the NAS benchmarks are only representative of scientific
applications and other applications and benchmarks need to be used to evaluate
the caching for VIA too.
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It should be noted that for receive operations, the cost of address translation
might be hidden if the translation is done before the message arrives. The AT1
method can be easily used to take advantage of this characteristic. But the
AT2 and AT3 methods can be implemented more easily if the translation is
done when the message arrives. When the AT2 and AT3 methods are used,
performing the translation before the message arrives increases the complexity
of the firmware and can decrease the overall performance of the communication
subsystem. Another issue which should be considered is that while for performing
the address translation by using the AT3 approach the host processor is not
involved, the AT1 approach requires the host to perform the translation.

Another important issue worth mentioning is the translation of the address
of the status field of descriptors. Since after the completion of an operation, the
status field of the corresponding descriptor should be updated, the NIC needs
to know the physical address of the status field. (Obviously, this update could
be done by issuing an interrupt to the host, but this approach will be too costly
to be used in situations where the application is polling for the completion of an
operation.) If the address translation is to be done by the NIC, there will be a
need to access the TLB one more time to perform the translation of the status
field address for each operation.

4.4 Completion Queues

We presented two approaches for implementing the completion queues in Sec-
tion 3.4. The cost for the first approach (CQ1) is practically the cost of NIC
performing a DMA operation to add an entry to the CQ. In the second ap-
proach (CQ2) the work queues associated with a CQ are polled. CQ2 approach
won’t be scalable if the number of work queues associated with a CQ is large.
On the other hand in many real-life applications each process usually communi-
cates only with a small set of processes. In order to evaluate the performance of
CQ2, we used the NAS benchmarks. Among the NAS benchmarks, the LU and
MG benchmarks use the MPI Waitany function to receive any message from a
collection of processes. Usage of this primitive is similar to waiting to receive a
message by examining the completion queue associated with a set of VI receive
queues. In order to find out the number of work queues associated with a CQ,
we recorded the number of processes with which a process communicates and
waits for the completion of the transfers by using the MPI Waitany function.
Table 3 shows the average number of processes a process communicates with
using MPI Waitany function in a 64-process system running the LU and MG
benchmarks. The data shows that processes communicate with only a small set
of processes. For example, in MG benchmark running on 64 nodes, each process
communicates to 6.5 other processes on the average. Polling the VI work queues
of these 6.5 processes is less time consuming (0.52 microseconds) than the NIC
adding a completion entry to CQ (1.61 microseconds). It can be seen that the
cost of the CQ2 approach is less than that of the CQ1 approach for these appli-
cations. It should be noted that the host CPU utilization is higher for the CQ2
approach.
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Table 3. Comparison between different approaches for implementing CQs.

Bench- Number of Avg. # of Recv Average Myrinet-Linux SP-NT
mark Processes Queues / CQ CQ2 Cost CQ1 Cost CQ1 Cost

LU 4 2 0.16 1.47 1.61
LU 16 3 0.24 1.47 1.61
LU 64 3.5 0.28 1.47 1.61
MG 4 3 0.24 1.47 1.61
MG 16 4.6 0.37 1.47 1.61
MG 64 6.5 0.52 1.47 1.61

5 Related Work

There have been several implementations of VIA. The Berkeley VIA (Version
1) [11] is one of the first software implementations of the VIA. (This implemen-
tation is a partial implementation of VIA mainly done to obtain a better insight
on different aspects of the implementation of the VIA.) In this implementation,
a memory page on the NIC memory has been used for the implementation of
a pair of doorbells. The doorbells for send queues are polled for finding out-
standing send descriptors. This polling is expensive and increases linearly with
the number of active VIs. The Berkeley VIA does not perform any caching of
descriptors. In other words, for sending messages NIC has to access the host
memory twice: once for obtaining the descriptor and once for obtaining the data
itself. In this implementation, only a subset of descriptors are moved between
the host and the NIC to reduce the high cost of transferring the descriptors.
The Berkeley VIA (Version 2) [10] is based on the the Berkeley VIA (Version 1)
implementation and adds memory registration and increased VI/user support.
In this implementation each memory page on the NIC can support up to 256
pairs of doorbells that belong to a single process. For the address translation a
buffer with limited size on the NIC is used for the TLB. If the size of registered
memory is bigger than what can be supported with this table, the translation
of some portions of the registered memory won’t be present in the NIC TLB. In
these cases the host memory is accessed to obtain the translation. The location of
the host buffers holding the complete translations for registered memory regions
are known to the NIC. The FirmVIA [7] is an experimental implementation of
the Virtual Interface Architecture for the IBM SP Switch-Connected NT cluster
which is one the newest clustering platforms available. In this implementation,
the address translation is performed by the host. Descriptors are also cached
for improving the performance. The performance of GigaNet cLAN [1] and the
Tandem ServerNet VIA implementations are studied in [18].

The effect of using caching for address translation for user-level network in-
terfaces (and in particular U-Net) has been presented in [22]. The address trans-
lation issues have also been studied in [16] and the address translation methods
are classified according to where lookup and the miss handling are performed.
The major difference between the address translation in systems discussed in
these papers and that in systems supporting VIA is the memory registration
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mechanism required by VIA. In VIA, all the memory locations used as send
and receive buffers are in registered memory regions and VIA implementations
are not concerned with the possibility of accessing a location which belongs to
swapped page frames.

The Virtual Interface Benchmark (VIBe) [13] has been recently developed for
evaluating the performance of VIA implementations under different communi-
cation scenarios and with respect to the implementation of different components
of VIA.

6 Conclusions

In this paper, we studied different components of VIA for sending and receiving
messages. We presented various approaches for implementing different compo-
nents of VIA and evaluated these approaches on two different platforms. We
showed that caching the descriptors in the NIC memory can improve the per-
formance of the communication subsystem by overlapping some portions of the
receive overhead with those of send and transmission overhead. Using the NAS
benchmarks, we showed that a small caching area for the address translation
entries eliminates the need for accessing TLBs stored in the host memory for
most of the send and receive operations. We also discussed the issues related to
the implementation of completion queues. We showed that a software implemen-
tation (polling) performs well for the NAS benchmarks because of the limited
number of processes with which a given process communicate. We also presented
a few approaches for implementing VIA doorbells in software. We are currently
engaged in the design and implementation of doorbells in hardware. We plan
to study and evaluate design choices for implementing RDMA operations and
different levels of reliability provided by VIA. We also plan to study the ef-
fect of different design choices on the overall performance of the communication
subsystem under a wide variety of workloads.
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Abstract. With the increasing uniprocessor and SMP computation power
available, interprocessor communication has become an important factor that
limits the performance of clusters of workstations. Many factors including
communication hardware overhead, communication software overhead, and the
user environment overhead (multithreading, multiuser) affect the performance
of the communication subsystems. A significant portion of the software
communication overhead is attributed to message copying. Ideally, it is
desirable to have a true zero-copy protocol where the message is moved directly
from the send buffer in its user space to the receive buffer in the destination.
However, because the send side does not know the final receive buffer address,
early arriving messages have to be buffered at a temporary area. In this work,
we show that there is a message reception communication locality in message-
passing applications. We have utilized this communication locality and devised
different message predictors at the receiver sides of communications. In
essence, these message predictors can be used to drain the network and cache
the incoming messages even if the corresponding receive calls have not been
posted yet. The performance of these predictors, in terms of hit ratio, on some
parallel applications is quite promising and suggest that prediction has the
potential to eliminate most of the remaining message copies.

1 Introduction

With the increasing uniprocessor and SMP computation power available today,
interprocessor communication has become an important factor that limits the
performance of workstations clusters. Communication overhead is one of the most
important factors affecting the performance of parallel computers. Many factors affect
the performance of communication subsystems. Specifically, communication
hardware and its services, communication software, and the user environment (multi-
programming, multiuser) are the major sources of the communication overhead.

Communication software overhead currently dominates communication time in
cluster of workstations. In the current generation of parallel computer systems, the
software overhead is in the tens of microseconds [15]. This is worse in cluster of
workstations. Even with high performance networks [9, 21] available today, there is
still a gap between what the network can offer and what the user application can see.
The communication software overhead cost comes mainly from three different
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sources; crossing protection boundaries between the user space and the kernel space,
passing several protocol layers, and involving a number of memory copying.

Several researchers are working to minimize the cost of crossing protection
boundaries, and using simpler protocol layers by utilizing user-level messaging
techniques such as active messages (AM) [40], fast messages (FM) [32], VMMC-2
[17], U-Net [41], LAPI [36], BIP [33], VIA [18], and PM [39].

A significant portion of the software communication overhead is attributed to
message copying. Ideally, message protocols should transfer messages in a single
copy (this is called a true zero-copy). That is, the protocol should copy the message
directly from the send buffer in its user space to the receive buffer in the destination.
However the send side does not know the receive buffer address and, hence, the
communication subsystem at the receiving end copies messages from the network
interface to a system buffer, and then from the system buffer to the receive buffer
when the receiving application posts the receive call. Some researchers have tried to
avoid memory copying [17, 27, 34, 6, 38, 37]. While they have been able to remove
the memory copying between the application buffer space and the network interface
a t the  se nder s ide  by us ing use r-leve l messaging techniques , they have n’t been a ble  to
remove  the  memory copying a t the  rece iver s ide s  comple te ly. Zero-copy messa ging a t
the  rece iver s ide  is  achie ved only if the  rece ive  ca ll is  a lready pos ted, a  rendez-vous
type  communica tion is  use d for la rge  message s , or the  des tina tion buffe r address  is
a lready known by a  pre -communica tion. Although MPI-2 [30] supports  remote
memory access , this  is  mos tly suita ble  for rece iver-initia te d communica tions  a ris ing
from the  shared-memory paradigm.

We are  inte res te d in bypass ing the  memory copying a t the  des tina tion in the
genera l case , synchronous  or asynchronous , eager or rendez-vous  a nd for sender-
initia te d communica tions  as  in MPI [29, 30]. In this  work, we  a rgue  tha t it is  poss ible
to addres s  the  message  copying problem a t the  rece iving s ide  by specula tion. We
support our cla im by showing tha t message s  display a  form of loca lity a t the  rece iving
ends  of communica tions .

This  work, for the  firs t time , introduce s  the  notion of messa ge  prediction a t the
rece iving s ide  of messa ge-pass ing sys tems . Pre dicting the  next rece ive
communica tion ca ll, and he nce  the  ne xt de s tina tion buffe r address , be fore  the  rece ive
ca ll is  pos te d will ena ble  us  to transfe r the  messa ge  directly to the  CPU cache
specula tive ly before  it is  nee de d so tha t a n e ffect of a  ze ro-copy ca n be  achie ved.

The  firs t contribution of this  work is  tha t we  show evidence  tha t the re  exis ts
message  communica tion loca lity a t the  rece iver s ide s  of messa ge-pa ss ing para lle l
applica tions . The  second contribution is  the  introduction and eva lua tion of diffe rent
message  predicting techniques  for the  rece iving s ide  of message-pa ss ing sys tems . Our
tools  a re  not ready for measuring the  e ffectivene ss  of our predictors  on the  a pplica tion
run-time  ye t. Our pre liminary eva lua tion mea sures  the  accuracy of the  pre dictors  in
te rms of hit ra tio. The  results  a re  quite  promis ing a nd sugges t tha t prediction ha s  the
pote ntia l to e limina te  most of the  remaining messa ge  copie s .

In Section 2.0 of this  pa per, we  expla in the  motiva tion behind this  work a nd
discuss  re la ted work. We e labora te  on how prediction would he lp e limina te  the
message  copies  a t the  rece iving s ide  of communica tions , in Section 3.0. Our
experime nta l methodology used to ga ther communica tion traces  from a  number of
para lle l be nchmarks  is  expla ine d in Section 4.0. In Section 5.0, we  show
communica tion freque ncy a nd unique  message  ide ntifie r dis tributions  in the
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benchmarks studied, and present evidence of message locality at the receiver sides. In
Section 6.0, we propose our message predictors and present their performance on the
applications. Finally, we conclude our paper in Section 7.0.

2 Motivation and Related Work

High performance computing is increasingly concerned with efficient communication
across the interconnect due to the availability of high-speed highly-advanced
processors. Modern switched networks, called System Area Networks (SAN), such as
Myrinet [9] and ServerNet [21], provide high communication bandwidth and low
communication latency. However, because of high processing overhead due to
communication software including network interface control, flow control, buffer
management, memory copying, polling and interrupt handling, users cannot see much
difference compared to traditional local area networks.

Fortunately, several user-level messaging techniques have been developed to
remove the operating system kernel and protocol stack from the critical path of
communications [40, 32, 17, 41, 18, 33, 36, 39]. This way, applications can send and
receive messages without operating system intervention which often greatly reduces
the communication latency.

A significant portion of the software communication overhead is due to the number
of message copying. With the traditional software messaging layers, there are usually
four message copying operations from the send buffer to the receive buffer, as shown
in Figure 1. These copies are namely from the send buffer to the system buffer (1),
from the system buffer to the network interface (NI) (2), and at the other end of
communication from the network interface to the system buffer (3), and from the
system buffer to the receive buffer (4) when the receive call is posted. Note that, we
have n’t cons idere d da ta  tra nsfe r from the  ne twork inte rface (NI) a t the  sending
proce ss  to the  ne twork inte rface  a t the  rece iving process  as  a  se para te  copy.

                        

Send Process Recei ve Process

Receive  buff er

Network

NI NI

Sys tem buffer

Send buff er

S ystem buffer

At the  se nd s ide , some user-leve l messa ging la yers  use  programmed I/O to avoid
sys tem buffe r copying. FM use s  programmed I/O while  AM-II and BIP do so only for
small messa ges . Some other use r-messa ging la yers  use  DMA. VMMC-2, U-Net, and
PM use  DMA to bypa ss  the  sys tem buffe r copy while  AM-II and BIP do so only for

Fig. 1. Data transfers in a traditional messaging layer
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large messages. In systems that use DMA, applications or a library dynamically pins
and unpins pages in the user space that contain the send and the receive buffers.
Address translation can be done using a kernel module as in BIP, or by caching a
limited number of address translations for the pinned pages as in VMMC-2, U-
Net/MM [7], and PM. Some network interfaces also permit bypassing message
copying at the network interface by directly writing into the network.

Contrary to the send side, bypassing the system buffer copying at the receiving side
may or may not be achievable. Processes at the sending sides do not know the
destination buffer addresses. Therefore, when a message arrives at the receiving side
it has to be buffered if the receive call has not been posted yet. VMMC [8] for the
SHRIMP multicomputer is a communication model that provides direct data transfer
be twee n the  sender’s  and rece iver’s  virtua l address  space . This  is  achie ve d by the
rece iver exporting its  buffe r address  by sending a  messa ge  to the  se nder before  the
actua l transmiss ion ca n take  place .

VMMC-2 [17], uses  a  transfer redirection mecha nism ins tead. It uses  a  de fault,
redirectable  rece ive  buffe r for a  sender who does  not know the  a ddre ss  of the  rece ive
buffe r. When a  message  a rrives  a t the  rece iving ne twork inte rface , the  redirection
mechanism checks  to see  if the  rece iver has  a lrea dy pos te d its  buffe r addres s . If the
rece ive  buffe r has  bee n pos ted ea rlie r than the  message  a rriva l, the  message  will be
directly trans fe rred to the  use r buffe r achie ve ing a  ze ro-copy tra ns fe r. If the  buffe r
addre ss  is  not pos te d, the  messa ge  is  buffe red in the  default buffe r. It will be
trans fe rred when the  rece ive  buffe r is  pos te d achie ving a  one-copy trans fe r.

Fas t socke ts  [34] ha s  bee n built us ing active  messa ges . It uses  a  mechanism a t the
rece iver s ide  ca lle d receive posting to a void the  message  copy in the  fas t socke t
buffe r. If the  messa ge  ha ndle r knows tha t the  da ta ’s  fina l memory des tina tion is
a lready known upon me ssa ge  a rriva l the  messa ge  is  directly moved to the  applica tion
user space . Otherwise , it ha s  to be  copie d into the  fas t socke t buffe r.

FM 2.x [27] use s  a  s imila r approach as  fas t socke ts , namely layer interleaving. FM
colla bora te s  with the  handle r to direct the  incoming me ssa ges  into the  des tina tion
buffe r if the  rece ive  ca ll has  a lrea dy bee n pos te d.

MPI-LAPI [6] is  an implementa tion of MPI on top of LAPI [36] for the  IBM SP
machine s . In the  impleme nta tion of the  ea ger protocol, the  hea der ha ndle r of the  LAPI
re turns  a  buffe r pointe r to LAPI which te lls  LAPI where  the  packe ts  of the  message
mus t be  reassembled. If a  rece ive  ca ll ha s  bee n pos ted, the  addres s  of the  use r buffe r
is  re turne d to LAPI. If the  header ha ndle r doe sn’t find a  matching rece ive , it will
re turn the  address  of an early arrival buffer a nd he nce  a  one-copy trans fe r is
accomplished. Message s  with s ize s  la rger than those  of ea ger trans fe r a re  trans fe rred
using a  2-phase  re ndez-vous  protocol.

Some research projects  have  proposed solutions  to multi-protocol message-pass ing
inte rfaces  on cluster of multiprocessors (Clumps) us ing both shared-memory for
intra -node  communica tions  a nd messa ge-pass ing for inte r-node  communica tions  [37,
19, 28].

MPICH-PM/CLUMP [37] is  an MPI libra ry implemente d on a  clus te r of SMPs. It
use s  a  messa ge-pass ing only mode l where  each proce ss  runs  on a  proce ssor of an
SMP node . For inte r-node  communica tions , it uses  eager a nd rendez-vous protocols
inte rna lly. For short message s , it achieve s  one-copy us ing eager protocol as  the
message  is  copie d into a  temporary buffe r if the  MPI rece ive  primitive  ha s  not been
issued. For la rge  message , it use s  rendez-vous  protocol to achieve  ze ro-copy by us ing
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a remote write operation but it needs an extra communication. For intra-node
communications, it achieves a one-copy using a kernel primitive that allows to copy
messages from the sender to the receiver without involving the communication buffer.

BIP-SMP [19], uses shared memory for small messages (a two-copy transaction),
and direct copy for large messages with a kernel overhead. For inter-node
communications, it works like MPI-BIP which is a port of MPICH [20].

TOMPI [13] is a threaded implementation of MPI on a single SMP node. It copies
a message only once by utilizing multiple threads on an SMP node. Unfortunately, it
is not scalable to cluster of SMP machines.

Another technique to bypass extra copying is the re-mapping technique. A zero-
copy TCP stack is implemented in Solaris by using copy-on-write pages and re-map-
ping to improve communication performance [11]. It achieves a relatively high
throughput for large messages. However, it does not have a good performance for
small messages.

fbufs [16] is also using the re-mapping technique to avoid the penalty of copying
large messages across different layers of protocol stack. However, fbufs allows re-
mapping only for a limited range of user virtual memory.

It is quite clear that the user-level messaging techniques may not achieve a zero-
copy communication all the time at the receiver side of communications, while all
page re-mapping techniques perform poorly for short messages which are extremely
important in parallel computing.

Prediction techniques have been proposed in the past to predict the future accesses
of sharing patterns and coherence activities in distributed shared memory (DSM) by
looking at their observed behavior [31, 26, 23, 43, 12, 35]. These techniques assume
that memory accesses and coherence activities in the near future will follow past
patterns. Sakr and his colleagues have used time series and neural networks for the
prediction of the next memory sharing requests [35]. Dahlgren and his colleagues
devised hardware regular stride techniques to prefetch several blocks ahead of the
current data block [12]. More elaborate hardware-based irregular stride prefetching
approaches have been proposed by Zhang and Torrellas [43]. Kaxiras and Goodman
have recently proposed an instruction-based approach which maintains the history of
load and store instructions in relation to cache misses and predicting their future
behavior [23]. Mukherjee and Hill proposed a general pattern-based predictor to learn
and predict the coherence activity for a memory block in a DSM [31]. In a recent
paper, Lai and Falsafi proposed a new class of pattern-based predictors, memory
sharing predictors, to eliminate the coherence overhead on a remote access latency by
just predicting the memory request messages [26].

As stated above, many prediction techniques have been proposed to reduce or hide
the latency of a remote memory access in shared memory systems. Recently, Afsahi
and Dimopoulos proposed some heuristics to predict the destination target of
subsequent communication requests at the send side of communications in message-
passing systems [1, 2]. To the best of our knowledge, no prediction technique has
been proposed for the receive side of communications in message-passing systems to
reduce the latency of a message transfer.

This paper, reports on an innovative approach for removing message copying at the
receiving ends of communications for message-passing systems. We argue that it is
possible to address the message copying problem at the receiving sides by
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speculation. We introduce message prediction techniques such that messages can be
directly transferred to the cache even if the receive calls have not been posted yet.

3 Using Message Predictions

In this section, we analyze the problem with the early arrival of messages at the
destinations in message-passing systems. In such systems, a number of messages
arrive in arbitrary order at the destinations. The consuming process or thread will
consume one message at a time. If we know which message is going to be consumed
next, we can move the message upon its arrival to near the place that it is to be
consumed (e.g. a staging cache).

For this, we have to consider three different issues. First, deciding which message
is going to be consumed next. This can be done by devising receive call predictors,
history-based predictors that predict subsequent receive calls by a given node in a
message-passing program, Second, deciding where and how this message is to be
moved in the cache. Third, efficient cache re-mapping and late binding mechanisms
need to be devised for when the receive call is posted.

In this work, we are addressing the first problem. That is, devising message
predictors and evaluating their performance. We are working on several methods to
address the remaining issues. We shall report on these issues in the future.

4 Experimental Methodology

In exploring the effect that different heuristics have in predicting the next receive call,
we utilized a number of parallel benchmarks, and extracted their communication
traces on which we applied our predictors.

We have used some well-known parallel benchmarks form the NAS parallel
benchmarks (NPB) suite [5], and the Parallel Spectral Transform Shallow Water
Model (PSTSWM) application [42]. We used the MPI [29] implementation of the
NPB suite (version 2.3), and version 6.2 of the PSTSWM application.

We are only interested in the patterns of the point-to-point communications
between pair-wise nodes in our applications. For this, we executed these applications
on an IBM SP2 machine. We wrote our own profiling code using the wrapper facility
of the MPI to gather the communication traces. We did this by inserting monitor
operations in the profiling MPI library for the communication related activities.

We considered different system sizes and problem sizes for our applications to
evaluate the performance of our prediction heuristics. Specifically, we experimented
with the  works ta tion cla ss  “W”, a nd the  la rge  class  “A” of the  NPB suite , a nd the
default problem s ize  for the  PSTSWM applica tion. The  NPB results  a re  a lmos t the
same for “W” and “A” clas ses . He nce , we  report only for the  “A” clas s  here . Note
tha t we  a lso removed the  initia liza tion part from the  communica tion traces  of the
PSTSWM applica tion. Although the  derive d results  a re  for the  a bove  me ntione d
para lle l applica tions , we  be lieve  tha t the se  applica tions  a re  represe nta tive  of the
exis ting scie ntific a nd e ngineering para lle l a pplica tions .
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5 Receiver-Side Locality Estimation

Our applications use synchronous and asynchronous MPI receive primitives, namely
MPI_Recv and MPI_Irecv [29]. MPI_Recv (buf, count, datatype, source, tag, comm,
status) is a standard blocking receive call. When it returns, data is available at the
destination buffer. The PSTSWM application uses this type of receive call. MPI_Irecv
(buf, count, datatype, source, tag, comm, request) is a standard nonblocking receive
call. It immediately posts the call and returns. Hence, data is not available at the time
of return. It needs another call to complete the call. All applications in our study use
this type of receive call.

One of the communication characteristics of any parallel application is the
frequency of communications. Figure 2, illustrates the minimum, average, and
maximum number of receive communication calls in the applications under different
system sizes. We ran our applications once for each different system size and counted
the number of receive calls at each node. The average, minimum, and maximum
number of receive calls is computed over all nodes of each application. It is clear that
all nodes in the BT, SP, and CG applications have the same number of receive
communication calls. While nodes in the PSTSWM application have different number
of receive communication calls.
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Each of the MPI_Recv and MPI_Irecv calls is distinguished by a 7-tuple of
parameters, namely: source, tag, count, datatype, buf, comm, and status or request. In
order to choose precisely one of the received messages at the network interface and
transfer it to the cache, our predictors need to consider all the details of a message
envelop. That is, source, tag, count, datatype, buf, and comm (we  don’t cons ide r

Fig. 2. Number of receive calls in the applications under different system sizes
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status and request as they are just a handle when the calls return). We assign a
different identifier for each unique 6-tuple found in the communication traces of the
applications. Figure 3, shows the number of unique message identifiers in our
applications under different system sizes. By average, minimum, and maximum, we
mean the average, minimum, and maximum number of unique identifiers taken over
all nodes of each application. It is evident that all nodes in the BT, and CG
applications have the same number of unique message identifiers while nodes in the
SP, and PSTSWM applications have different number of unique message identifiers
(except when the number of processors is four for the SP benchmark).
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5.1 Communication Locality

In the context of message passing programming, many parallel algorithms are built
from loops consisting of computation and communication phases. Therefore,
communication patterns may be repetitive. This has motivated researchers to find or
use the communications locality properties of parallel applications [1, 2, 24, 22, 25,
14, 10]. Kim and Lilja [24] have shown that there is a locality in message destination,
message sizes, and consecutive runs of send/ receive primitives in parallel algorithms.
They have proposed and expanded the concept of memory access locality based on
the Least Recently Used, LRU, stack model to determine these localities. In [1, 2],
Afsahi and Dimopoulos have shown the communication locality of message-passing
application in terms of message destination locality. Karlsson and Brorsson [22] have

Fig. 3. Number of unique message identifiers in the applications under different system sizes
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compared the communication properties of parallel applications in message-passing
systems using MPI, and shared memory systems using TreadMarks [4].

In conjunction with this work, message reception locality is understood to mean
that if a certain message reception call has been used it will be re-used with high
probability by a  portion of code  tha t is  “near” the  place  tha t wa s  used earlie r, and tha t
it will be  re -used in the  near future .

In the  following subsection, we  prese nt the  performa nce  of the  class ica l LRU,
LFU, and FIFO he uris tics  on the  applica tions  to see  the  e xis te nce  of loca lity or
repe titive  rece ive  ca lls . We use  the  hit ratio to es ta blish a nd compare  the  performa nce
of the se  he uris tics . As  a  hit ra tio, we  define  the  perce ntage  of times  tha t the  predicted
rece ive  ca ll was  correct out of a ll rece ive  communica tion reques ts .

5.2 The LRU, FIFO, and LFU Heuristics

The  Least Recently Used (LRU), First-In-First-Out (FIFO), and Least Frequently
Used (LFU) heuris tics , mainta in a  se t of k (k is  the  window s ize ) unique  messa ge
identifie rs . If the  ne xt message  ide ntifie r is  a lready in the  se t, the n a  hit is  recorded.
Otherwise , a  miss  is  recorde d and the  new message  ide ntifie r replaces  one  of the
identifie rs  in the  se t according to which of the  LRU, FIFO or LFU he uris tics  is  use d.

Figure  4, shows the  results  of the  LRU, FIFO, and LFU heuris tics  on the
applica tion benchmarks  whe n the  number of proce ssors  is  64 for CG a nd 49 for a ll
other a pplica tions . S imila r results  have  bee n produced for diffe rent sys tem s izes  [3]. It
is  clea r tha t the  hit-ra tios  in a ll benchmarks  approach 1 as  the  window s ize  increases .
The  performance  of the  FIFO a lgorithm is  the  same as  the  LRU for BT, and
PSTSWM be nchmarks , a nd a lmost the  same for the  SP a nd CG be nchmarks . The
LFU a lgorithm cons is tently has  a  be tte r performa nce  tha n the  LRU and FIFO
heuris tics  on the  BT, CG, and PSTSWM applica tions . It a lso ha s  a  be tte r pe rformance
than the  LRU and FIFO heuris tics  on the  SP be nchmark for window s izes  of grea te r
than five .

The  LRU, FIFO a nd LFU he uris tics  do not pre dict exactly the  next rece ive  ca ll but
shows  the  probability tha t the  next rece ive  ca ll might be  in the  se t. For ins ta nce , the
SP be nchmark shows nearly 60% hit ra tio for a  window s ize  of five  under the  LRU
heuris tic. This  means  tha t 60% of the  time  one  of the  five  mos t recently issue d ca ll
will be  issued next. These  heuris tics  perform be tte r whe n the  window s ize  k is
sufficie ntly la rge . However, this  la rge  window adds  to the  hardware /software
implementa tion comple xity as  one  would nee d for example , to move  a ll messa ges  in
the  se t to the  cache  in the  like lihood tha t one  of them is  going to be  use d ne xt. This  is
prohibitive  for la rge  window s izes .
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We are interested to devise predictors that can predict the next receive call with a
high probability. In Section , we introduce our novel message predictors employing
different heuristics and evaluate their performance.

6 Message Predictors

The set of predictors introduced in this section predict the subsequent receive calls
based on the past history of communication patterns on a per node basis. These
heuristics were originally proposed in [1, 2] to predict the destination target of
subsequent communication requests at the sender sides of communications. These
predictors can be used dynamically at the communication assist with or without the
help of a programmer or a compiler. In the following figures, by average, minimum,
and maximum, we mean the average, minimum, and maximum hit ratio taken over all
nodes of each application.

6.1 The Tag Predictor

The Tag predictor assumes a static communication environment in the sense that a
particular communication receive call in a section of code, will be the same one with
high probability. We attach a different tag (this is different than the tag in an MPI
communication call; It may be a unique identifier or the program counter at the
address of the communication call) to each of the receive calls found in the
applications. This can be implemented with the help of the compiler or by the

Fig. 4. Effects of the LR, FIFO, and LFU heuristics on the applications
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programmer through a pre-receive (tag) operation which will be passed to the
communication subsystem to predict the next receive call before the actual receive
call is issued.

To this tag and at the communication assist, we assign this receive call. A hit is
recorded if in subsequent encounters of the tag, the requested communication is the
same as the receive call already associated with the tag. Otherwise, a miss is recorded
and the tag is assigned the newly requested receive call. The performance of the Tag
predictor is  shown in Figure  5. It is  e vident tha t this  predictor doe sn’t have  a  good
performance  on the  applica tions . It cannot pre dict the  communica tion pa tte rns  of
PSTSWM at a ll, and ha s  a  de grading performa nce  for a ll other applica tions  whe n the
number of processors  increases .
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6.2 The Single-Cycle Predictor

The  Single-cycle predictor is  ba sed on the  fact tha t if a  group of rece ive  ca lls  a re
issued re pea tedly in a  cyclica l fashion, the n we  can predict the  next reques t one  s tep
ahead. The  following e xample  illus tra tes  the  s ingle -cycle  predictor. The  top trace
represents  the  seque nce  of reques te d rece ive  ca lls , while  the  bottom trace  represents
the  pre dicte d se que nce . The  a rrows with the  cros s  represe nt misse s , while  the  ones
with the  circle  represe nt hits . The  “dash” in place  of a  predicted reque s t indica te s  tha t
a  cycle  is  be ing forme d, and the re fore  no prediction is  offe red (note  tha t this  is  a lso
adde d to the  misses).

Request sequence   1    3    5    6    1    3    5    6    7    7    1    3    5    6

Predicted                 -     -    -     -    3    5    6    1    -     7     -     -    -     -

This  predictor impleme nts  a  s imple  cycle  discovery a lgorithm. Sta rting with a
cycle-head rece ive  ca ll (this  is  the  firs t rece ive  ca ll tha t is  reque s ted a t s ta rt-up, or the
rece ive  ca ll tha t ca use s  a  miss ), we  log the  se que nce  of reques ts  until the  cycle -he ad
rece ive  ca ll is  reques ted a ga in. This  s tore d se que nce  cons titutes  a  cycle , and can be
use d to predict the  subse quent re que s ts . If the  predicte d rece ive  ca ll coincides  with the
subse quent re que s te d one , then we  record a  hit. If the  reques te d rece ive  ca ll does  not

Fig. 5.  Effects of the Tag predictor on the applications
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coincide with the predicted one, then we record a miss and the cycle formation stage
commences with the cycle-head being the receive call that caused the miss. The
performance of the Single-cycle predictor is shown in Figure 6. It is evident that its
performance is consistently very high (hit ratios of more than 0.9).
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6.3 The Tag-Cycle Predictor

The  Tag pre dictor didn’t ha ve  a  good performance  on the  applica tions  while  the
Single -cycle  predictor had a  very good performa nce . We would like  to see  the  impact
of the  cycle  a lgorithm on the  Ta g pre dictor. There fore , we  combine  the  Tag a lgorithm
with the  S ingle-cycle  a lgorithm a nd ca ll it the  Tag-cycle predictor.

In the  Tag-cycle  predictor, we  a ttach a  diffe rent tag to each of the  communica tion
reque s ts  found in the  be nchmarks  a nd do a  S ingle -cycle  discovery a lgorithm on each
tag. To this  ta g and a t the  communica tion as s is t, we  a ss ign the  reques ted rece ive  ca ll,
to be  ca lle d tagcycle-head node  (this  is  the  firs t rece ive  ca ll tha t is  reques ted a t this
tag, or the  node  tha t ca use s  a  miss ). We log the  se quence  of the  reque s ts  a t this  ta g
until the  ta gcycle -hea d node  is  reque s ted a ga in. This  s tored se quence  cons titute s  a
cycle  a t each ta g, and can be  used to predict the  subse que nt reque s ts . The  per-
formance  of the  Tag-cycle  predictor is  shown in Figure  7. The  Tag-cycle  pre dictor
performs well on a ll be nchmarks . Its  pe rformance  is  the  same as  the  Single -cycle
predictor on BT a nd PSTSWM. However, it has  a  be tte r pe rformance  on CG a nd a
lower performa nce  on SP.
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Fig. 6. Effects of the Single-cycle predictor on the applications

Fig. 7.  Effects of the Tag-cycle predictor on the applications
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6.4 The Tag-Bettercycle Predictor

In the Single-cycle and Tag-cycle predictors, as soon as a receive call breaks a cycle
we remove the cycle and form a new cycle. In the Tag-bettercycle predictor, we keep
the last cycle associated with each tagcycle-head encountered in the communication
patterns of each node. This means that when a cycle breaks we maintain this cycle in
memory for la te r re fe rences . If we  have n’t a lready see n the  new ta gcycle -he a d the n
we form a  new cycle  for it, otherwise  we  pre dict the  ne xt communica tion ca ll base d
on the  member of the  cycle  a ssocia te d with this  ne w tagcycle -hea d tha t we  ha ve  from
the  pa s t in memory. The  performance  of the  Ta g-be tte rcycle  pre dictor is  shown in
Figure  8.

The  Tag-be tte rcycle  predictor pe rforms well on a ll benchmarks . Its  pe rforma nce  is
the  same as  the  S ingle -cycle  and Ta g-cycle  predictors  on BT and PSTSWM.
Howe ver, it has  a  be tte r pe rforma nce  on CG a nd a  lower performa nce  on SP re la tive
to the  S ingle -cycle  pre dictor. The  Tag-be tte rcycle  predictor has  a  be tte r performance
on SP compared to the  Tag-cycle  predictor.
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6.5 Message  Predictors’ Comparison

Figure 9, presents a comparison of the performance of the predictors presented in this
paper when the number of processors is 64 for CG and 49 for the other benchmarks.
As we have seen so far, Single-cycle, Tag-cycle and Tag-bettercycle all perform well
on the benchmarks. However, the performance of the Single-cycle is better on the SP
benchmark while Tag-cycle and Tag-bettercycle have better performance for the CG
benchmark. Similar results for other systems sizes can be found in [3].

Fig. 8.  Effects of the Tag-bettercycle predictor on the applications
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7 Conclusion

Communication latency adversely affects the performance of networks of
workstations. A significant portion of the software communication overhead belongs
to a number of message copying operations. Ideally, it is very desirable to have a true
zero-copy protocol where the message is moved directly from the send buffer in its
user space to the receive buffer in the destination without any intermediate buffering.
However, this is not always possible as a message may arrive at the destination where
the corresponding receive call has not been issued yet. Hence, the message has to be
buffered in a temporary buffer.

In this paper, we have shown that there is a message reception communication
locality in message-passing applications. We have utilized this communication
locality and devised different message predictors for the receiver sides of
communications. By predicting receive calls early, a node can perform the necessary
data placement upon message reception and move the message directly into the cache.
We presented the performance of these predictors on some parallel applications. The
performance results are quite promising and justify more work in this area.

We envision these predictors to be used to drain the network and place the
incoming messages in the cache in such a way so as to increase the probability that
the messages will still be in cache when the consuming thread needs to access them.

Further issues we are presently investigating include mechanisms for in-the-cache
late binding and thread scheduling to guarantee that the consuming thread finds the
message in the cache of the processor it executes on. We shall report on these issues
in the future.

Fig. 9.  Comparison of the performance of the predictors on the applications
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